Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (189)
  • Open Access

    ARTICLE

    Geometrically Nonlinear Analysis of Anisotropic Composite Plates Resting On Nonlinear Elastic Foundations

    Ali Kemal Baltacıoğlu1, Ömer Civalek1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.68, No.1, pp. 1-24, 2010, DOI:10.3970/cmes.2010.068.001

    Abstract Geometrically nonlinear static analysis of an anisotropic thick plate resting on nonlinear two-parameter elastic foundations has been studied. The plate formulation is based on first-order shear deformation theory (FSDT). The governing equation of bending for rectangular orthotropic thick plate is derived by using von Karman equation. The nonlinear static deflections of orthotropic plates on elastic foundation are investigated using the discrete singular convolution method. The effects of foundation, material and geometric parameters of orthotropic plates on nonlinear deflections are investigated. More >

  • Open Access

    ARTICLE

    Geometric Formulation of Maxwell's Equations in the Frequency Domain for 3D Wave Propagation Problems in Unbounded Regions

    P. Bettini1, M. Midrio2, R. Specogna2

    CMES-Computer Modeling in Engineering & Sciences, Vol.66, No.2, pp. 117-134, 2010, DOI:10.3970/cmes.2010.066.117

    Abstract In this paper we propose a geometric formulation to solve 3D electromagnetic wave problems in unbounded regions in the frequency domain. An absorbing boundary condition (ABC) is introduced to limit the size of the computational domain by means of anisotropic Perfectly Matched Layers (PML) absorbing media in the outer layers of an unstructured mesh. The numerical results of 3D benchmark problems are presented and the effect of the PML parameters and scaling functions on PML effectiveness are discussed. More >

  • Open Access

    ARTICLE

    Finite Element Analysis of Discrete Circular Dislocations

    K.P. Baxevanakis1, A.E. Giannakopoulos2

    CMES-Computer Modeling in Engineering & Sciences, Vol.60, No.2, pp. 181-198, 2010, DOI:10.3970/cmes.2010.060.181

    Abstract The present work gives a systematic and rigorous implementation of (edge type) circular Volterra dislocation loops in ordinary axisymmetric finite elements using the thermal analogue and the integral representation of dislocations through stresses. The accuracy of the proposed method is studied in problems where analytical solutions exist. The full fields are given for loop dislocations in isotropic and anisotropic crystals and the Peach-Koehler forces are calculated for loops approaching free surfaces and bimaterial interfaces. The results are expected to be very important in the analysis of plastic yield strength, giving quantitative results regarding the influence More >

  • Open Access

    ARTICLE

    Developing Mechanistic Understanding of Granular Behaviour in Complex Moving Geometry using the Discrete Element Method. Part A: Measurement and Reconstruction of TurbulaMixer Motion using Positron Emission Particle Tracking

    M. Marigo1,2, D. L. Cairns1, M. Davies1, M. Cook3,A. Ingram2,4,5, E. H. Stitt1

    CMES-Computer Modeling in Engineering & Sciences, Vol.59, No.3, pp. 217-238, 2010, DOI:10.3970/cmes.2010.059.217

    Abstract In this work the complex motion of the Turbulamixer has been measured by Multiple-Positron Emission Particle Tracking (Multiple PEPT) in order to set-up a DEM numerical model. Positron emitting radioactive tracers were attached to three of the pivot bearings on the shaft of the mixer to enable the rotation and translation of the mixer chamber to be tracked in the PEPT camera. The measured movement was mathematically reconstructed and imported into DEM in order to apply the same movement to the modelled vessel. The three-dimensional motion of particles in a vessel located in the Turbula More >

  • Open Access

    ARTICLE

    Error Bounds forDiscrete Geometric Approach

    Lorenzo Codecasa1, Francesco Trevisan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.59, No.2, pp. 155-180, 2010, DOI:10.3970/cmes.2010.059.155

    Abstract Electromagnetic problems spatially discretized by the so called Discrete Geometric Approach are considered, where Discrete Counterparts of Constitutive Relations are discretized within an Energetic Approach. Pairs of oriented dual grids are considered in which the primal grid is composed of (oblique) parallelepipeds, (oblique) triangular prisms and tetrahedra and the dual grid is obtained according to the barycentric subdivision. The focus of the work is the evaluation of the constants bounding the approximation error of the electromagnetic field; the novelty is that such constants will be expressed in terms of the geometrical details of oriented dual More >

  • Open Access

    ARTICLE

    Multi-field Coupling of Particulate Systems

    K. Han1, Y. T. Feng1, D. R. J. Owen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.59, No.1, pp. 1-30, 2010, DOI:10.3970/cmes.2010.059.001

    Abstract A computational framework is established for effective modelling of fluid-thermal-particle interactions. The numerical procedures comprise the Discrete Element Method for simulating particle dynamics; the Lattice Boltzmann Method for modelling the mass and velocity field of the fluid flow; and the Discrete Thermal Element Method and the Thermal Lattice Boltzmann Method for solving the temperature field. The coupling of the three fields is realised through hydrodynamic interaction force terms. Selected numerical examples are provided to illustrate the applicability of the proposed approach. More >

  • Open Access

    ARTICLE

    Convergence of Electromagnetic Problems Modelled by Discrete Geometric Approach

    Lorenzo Codecasa1, Francesco Trevisan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.58, No.1, pp. 15-44, 2010, DOI:10.3970/cmes.2010.058.015

    Abstract This paper starts from the spatial discretization of an electromagnetic problem over pairs of oriented grids, one dual of the other, according to the so called Discrete Geometric Approach(DGA) to computational electromagnetism; the Cell Method or the Finite Integration Technique are examples of such an approach. The core of the work is providing for the first time a convergence analysis when the discrete counter-parts of constitutive relations are computed by means of an energetic framework. More >

  • Open Access

    ARTICLE

    Size Effects and Mesh Independence in Dynamic Fracture Analysis of Brittle Materials

    Letícia Fleck Fadel Miguel1, Ignacio Iturrioz2, Jorge Daniel Riera3

    CMES-Computer Modeling in Engineering & Sciences, Vol.56, No.1, pp. 1-16, 2010, DOI:10.3970/cmes.2010.056.001

    Abstract Numerical predictions of the failure load of large structures, accounting for size effects, require the adoption of appropriate constitutive relations. These relations depend on the size of the elements and on the correlation lengths of the random fields that describe material properties. The authors proposed earlier expressions for the tensile stress-strain relation of concrete, whose parameters are related to standard properties of the material, such as Young's modulus or specific fracture energy and to size. Simulations conducted for a typical concrete showed that as size increases, the effective stress-strain diagram becomes increasingly linear, with a… More >

  • Open Access

    ARTICLE

    Discrete Modelling of Capillary Mechanisms in Multi-Phase Granular Media

    L. Scholtès1, B. Chareyre2, F.Nicot3, F. Darve4

    CMES-Computer Modeling in Engineering & Sciences, Vol.52, No.3, pp. 297-318, 2009, DOI:10.3970/cmes.2009.052.297

    Abstract A numerical study of multi-phase granular materials based upon micro-mechanical modelling is proposed. Discrete element simulations are used to investigate capillary induced effects on the friction properties of a granular assembly in the pendular regime. Capillary forces are described at the local scale through the Young-Laplace equation and are superimposed to the standard dry particle interaction usually well simulated through an elastic-plastic relationship. Both effects of the pressure difference between liquid and gas phases and of the surface tension at the interface are integrated into the interaction model. Hydraulic hysteresis is accounted for based on… More >

  • Open Access

    ARTICLE

    Fragmentation of Ice Sheets during Impact

    A.P.S.Selvadurai1

    CMES-Computer Modeling in Engineering & Sciences, Vol.52, No.3, pp. 259-278, 2009, DOI:10.3970/cmes.2009.052.259

    Abstract The paper deals with a computational approach for modelling the fragmentation of ice sheets during their impact with stationary structures. The modelling takes into consideration the intact continuum behaviour of the ice as a rate-sensitive elastoplastic material. During impact, the ice sheet can undergo fragmentation, which is controlled by a brittle strength criterion based on the current stress state. The fragmentation allows the generation of discrete elements of the ice sheet, the movements of which are governed by the equations of motion. The contact between individual fragments is governed by a Coulomb criterion. The individual More >

Displaying 161-170 on page 17 of 189. Per Page