Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    Unsupervised Satellite Low-Light Image Enhancement Based on the Improved Generative Adversarial Network

    Ming Chen1,*, Yanfei Niu2, Ping Qi1, Fucheng Wang1

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5015-5035, 2025, DOI:10.32604/cmc.2025.067951 - 23 October 2025

    Abstract This research addresses the critical challenge of enhancing satellite images captured under low-light conditions, which suffer from severely degraded quality, including a lack of detail, poor contrast, and low usability. Overcoming this limitation is essential for maximizing the value of satellite imagery in downstream computer vision tasks (e.g., spacecraft on-orbit connection, spacecraft surface repair, space debris capture) that rely on clear visual information. Our key novelty lies in an unsupervised generative adversarial network featuring two main contributions: (1) an improved U-Net (IU-Net) generator with multi-scale feature fusion in the contracting path for richer semantic feature… More >

  • Open Access

    ARTICLE

    Augmented Deep-Feature-Based Ear Recognition Using Increased Discriminatory Soft Biometrics

    Emad Sami Jaha*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3645-3678, 2025, DOI:10.32604/cmes.2025.068681 - 30 September 2025

    Abstract The human ear has been substantiated as a viable nonintrusive biometric modality for identification or verification. Among many feasible techniques for ear biometric recognition, convolutional neural network (CNN) models have recently offered high-performance and reliable systems. However, their performance can still be further improved using the capabilities of soft biometrics, a research question yet to be investigated. This research aims to augment the traditional CNN-based ear recognition performance by adding increased discriminatory ear soft biometric traits. It proposes a novel framework of augmented ear identification/verification using a group of discriminative categorical soft biometrics and deriving… More > Graphic Abstract

    Augmented Deep-Feature-Based Ear Recognition Using Increased Discriminatory Soft Biometrics

  • Open Access

    ARTICLE

    VRCL: A Discrimination Detection Method for Multilingual and Multimodal Information

    Kejun Zhang1, Meijiao Li1,*, Jiahao Cheng1, Jun Wang1, Ying Yang2

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1019-1035, 2025, DOI:10.32604/cmc.2025.066532 - 29 August 2025

    Abstract With the rapid growth of the Internet and social media, information is widely disseminated in multimodal forms, such as text and images, where discriminatory content can manifest in various ways. Discrimination detection techniques for multilingual and multimodal data can identify potential discriminatory behavior and help foster a more equitable and inclusive cyberspace. However, existing methods often struggle in complex contexts and multilingual environments. To address these challenges, this paper proposes an innovative detection method, using image and multilingual text encoders to separately extract features from different modalities. It continuously updates a historical feature memory bank, More >

  • Open Access

    ARTICLE

    EDU-GAN: Edge Enhancement Generative Adversarial Networks with Dual-Domain Discriminators for Inscription Images Denoising

    Yunjing Liu1,, Erhu Zhang1,2,,*, Jingjing Wang3, Guangfeng Lin2, Jinghong Duan4

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1633-1653, 2024, DOI:10.32604/cmc.2024.052611 - 18 July 2024

    Abstract Recovering high-quality inscription images from unknown and complex inscription noisy images is a challenging research issue. Different from natural images, character images pay more attention to stroke information. However, existing models mainly consider pixel-level information while ignoring structural information of the character, such as its edge and glyph, resulting in reconstructed images with mottled local structure and character damage. To solve these problems, we propose a novel generative adversarial network (GAN) framework based on an edge-guided generator and a discriminator constructed by a dual-domain U-Net framework, i.e., EDU-GAN. Unlike existing frameworks, the generator introduces the… More >

  • Open Access

    ARTICLE

    A Dual Discriminator Method for Generalized Zero-Shot Learning

    Tianshu Wei1, Jinjie Huang1,2,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1599-1612, 2024, DOI:10.32604/cmc.2024.048098 - 25 April 2024

    Abstract Zero-shot learning enables the recognition of new class samples by migrating models learned from semantic features and existing sample features to things that have never been seen before. The problems of consistency of different types of features and domain shift problems are two of the critical issues in zero-shot learning. To address both of these issues, this paper proposes a new modeling structure. The traditional approach mapped semantic features and visual features into the same feature space; based on this, a dual discriminator approach is used in the proposed model. This dual discriminator approach can… More >

  • Open Access

    ARTICLE

    Learning Discriminatory Information for Object Detection on Urine Sediment Image

    Sixian Chan1,2, Binghui Wu1, Guodao Zhang3, Yuan Yao4, Hongqiang Wang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 411-428, 2024, DOI:10.32604/cmes.2023.029485 - 22 September 2023

    Abstract In clinical practice, the microscopic examination of urine sediment is considered an important in vitro examination with many broad applications. Measuring the amount of each type of urine sediment allows for screening, diagnosis and evaluation of kidney and urinary tract disease, providing insight into the specific type and severity. However, manual urine sediment examination is labor-intensive, time-consuming, and subjective. Traditional machine learning based object detection methods require hand-crafted features for localization and classification, which have poor generalization capabilities and are difficult to quickly and accurately detect the number of urine sediments. Deep learning based object detection… More > Graphic Abstract

    Learning Discriminatory Information for Object Detection on Urine Sediment Image

  • Open Access

    ARTICLE

    Deep Learning-Based Robust Morphed Face Authentication Framework for Online Systems

    Harsh Mankodiya1, Priyal Palkhiwala1, Rajesh Gupta1,*, Nilesh Kumar Jadav1, Sudeep Tanwar1, Osama Alfarraj2, Amr Tolba2, Maria Simona Raboaca3,4,*, Verdes Marina5

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 1123-1142, 2023, DOI:10.32604/cmc.2023.038556 - 31 October 2023

    Abstract The amalgamation of artificial intelligence (AI) with various areas has been in the picture for the past few years. AI has enhanced the functioning of several services, such as accomplishing better budgets, automating multiple tasks, and data-driven decision-making. Conducting hassle-free polling has been one of them. However, at the onset of the coronavirus in 2020, almost all worldly affairs occurred online, and many sectors switched to digital mode. This allows attackers to find security loopholes in digital systems and exploit them for their lucrative business. This paper proposes a three-layered deep learning (DL)-based authentication framework More >

  • Open Access

    ARTICLE

    A Multi-Task Motion Generation Model that Fuses a Discriminator and a Generator

    Xiuye Liu, Aihua Wu*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 543-559, 2023, DOI:10.32604/cmc.2023.039004 - 08 June 2023

    Abstract The human motion generation model can extract structural features from existing human motion capture data, and the generated data makes animated characters move. The 3D human motion capture sequences contain complex spatial-temporal structures, and the deep learning model can fully describe the potential semantic structure of human motion. To improve the authenticity of the generated human motion sequences, we propose a multi-task motion generation model that consists of a discriminator and a generator. The discriminator classifies motion sequences into different styles according to their similarity to the mean spatial-temporal templates from motion sequences of 17… More >

  • Open Access

    ARTICLE

    Multi-Generator Discriminator Network Using Texture-Edge Information

    Kyeongseok Jang1, Seongsoo Cho2, Kwang Chul Son3,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3537-3551, 2023, DOI:10.32604/cmc.2023.030557 - 31 March 2023

    Abstract In the proposed paper, a parallel structure type Generative Adversarial Network (GAN) using edge and texture information is proposed. In the existing GAN-based model, many learning iterations had to be given to obtaining an output that was somewhat close to the original data, and noise and distortion occurred in the output image even when learning was performed. To solve this problem, the proposed model consists of two generators and three discriminators to propose a network in the form of a parallel structure. In the network, each edge information and texture information were received as inputs, More >

  • Open Access

    ARTICLE

    Copy-Move Geometric Tampering Estimation Through Enhanced SIFT Detector Method

    J. S. Sujin1,*, S. Sophia2

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 157-171, 2023, DOI:10.32604/csse.2023.023747 - 01 June 2022

    Abstract Digital picture forgery detection has recently become a popular and significant topic in image processing. Due to advancements in image processing and the availability of sophisticated software, picture fabrication may hide evidence and hinder the detection of such criminal cases. The practice of modifying original photographic images to generate a forged image is known as digital image forging. A section of an image is copied and pasted into another part of the same image to hide an item or duplicate particular image elements in copy-move forgery. In order to make the forgeries real and inconspicuous,… More >

Displaying 1-10 on page 1 of 13. Per Page