Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (51)
  • Open Access

    ARTICLE

    Plant Disease Detection and Classification Using Hybrid Model Based on Convolutional Auto Encoder and Convolutional Neural Network

    Tajinder Kumar1, Sarbjit Kaur2, Purushottam Sharma3,*, Ankita Chhikara4, Xiaochun Cheng5,*, Sachin Lalar6, Vikram Verma7

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5219-5234, 2025, DOI:10.32604/cmc.2025.062010 - 19 May 2025

    Abstract During its growth stage, the plant is exposed to various diseases. Detection and early detection of crop diseases is a major challenge in the horticulture industry. Crop infections can harm total crop yield and reduce farmers’ income if not identified early. Today’s approved method involves a professional plant pathologist to diagnose the disease by visual inspection of the afflicted plant leaves. This is an excellent use case for Community Assessment and Treatment Services (CATS) due to the lengthy manual disease diagnosis process and the accuracy of identification is directly proportional to the skills of pathologists.… More >

  • Open Access

    ARTICLE

    An Attention-Based CNN Framework for Alzheimer’s Disease Staging with Multi-Technique XAI Visualization

    Mustafa Lateef Fadhil Jumaili1,2, Emrullah Sonuç1,*

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2947-2969, 2025, DOI:10.32604/cmc.2025.062719 - 16 April 2025

    Abstract Alzheimer’s disease (AD) is a significant challenge in modern healthcare, with early detection and accurate staging remaining critical priorities for effective intervention. While Deep Learning (DL) approaches have shown promise in AD diagnosis, existing methods often struggle with the issues of precision, interpretability, and class imbalance. This study presents a novel framework that integrates DL with several eXplainable Artificial Intelligence (XAI) techniques, in particular attention mechanisms, Gradient-Weighted Class Activation Mapping (Grad-CAM), and Local Interpretable Model-Agnostic Explanations (LIME), to improve both model interpretability and feature selection. The study evaluates four different DL architectures (ResMLP, VGG16, Xception, More >

  • Open Access

    ARTICLE

    Mango Disease Detection Using Fused Vision Transformer with ConvNeXt Architecture

    Faten S. Alamri1, Tariq Sadad2,*, Ahmed S. Almasoud3, Raja Atif Aurangzeb4, Amjad Khan3

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1023-1039, 2025, DOI:10.32604/cmc.2025.061890 - 26 March 2025

    Abstract Mango farming significantly contributes to the economy, particularly in developing countries. However, mango trees are susceptible to various diseases caused by fungi, viruses, and bacteria, and diagnosing these diseases at an early stage is crucial to prevent their spread, which can lead to substantial losses. The development of deep learning models for detecting crop diseases is an active area of research in smart agriculture. This study focuses on mango plant diseases and employs the ConvNeXt and Vision Transformer (ViT) architectures. Two datasets were used. The first, MangoLeafBD, contains data for mango leaf diseases such as… More >

  • Open Access

    ARTICLE

    Hybrid MNLTP Texture Descriptor and PDCNN-Based OCT Image Classification for Retinal Disease Detection

    Jahida Subhedar1,2, Anurag Mahajan1,*, Shabana Urooj3, Neeraj Kumar Shukla4,5

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2831-2847, 2025, DOI:10.32604/cmc.2025.059350 - 17 February 2025

    Abstract Retinal Optical Coherence Tomography (OCT) images, a non-invasive imaging technique, have become a standard retinal disease detection tool. Due to disease, there are morphological and textural changes in the layers of the retina. Classifying OCT images is challenging, as the morphological manifestations of different diseases may be similar. The OCT images capture the reflectivity characteristics of the retinal tissues. Retinal diseases change the reflectivity property of retinal tissues, resulting in texture variations in OCT images. We propose a hybrid approach to OCT image classification in which the Convolution Neural Network (CNN) model is trained using… More >

  • Open Access

    ARTICLE

    Plant Disease Detection Algorithm Based on Efficient Swin Transformer

    Wei Liu1,*, Ao Zhang

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3045-3068, 2025, DOI:10.32604/cmc.2024.058640 - 17 February 2025

    Abstract Plant diseases present a significant threat to global agricultural productivity, endangering both crop yields and quality. Traditional detection methods largely rely on manual inspection, a process that is not only labor-intensive and time-consuming but also subject to subjective biases and dependent on operators’ expertise. Recent advancements in Transformer-based architectures have shown substantial progress in image classification tasks, particularly excelling in global feature extraction. However, despite their strong performance, the high computational complexity and large parameter requirements of Transformer models limit their practical application in plant disease detection. To address these constraints, this study proposes an… More >

  • Open Access

    ARTICLE

    Performance of Deep Learning Techniques in Leaf Disease Detection

    Robertas Damasevicius1,*, Faheem Mahmood2, Yaseen Zaman3, Sobia Dastgeer2, Sajid Khan2

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1349-1366, 2024, DOI:10.32604/csse.2024.050359 - 13 September 2024

    Abstract Plant diseases must be identified as soon as possible since they have an impact on the growth of the corresponding species. Consequently, the identification of leaf diseases is essential in this field of agriculture. Diseases brought on by bacteria, viruses, and fungi are a significant factor in reduced crop yields. Numerous machine learning models have been applied in the identification of plant diseases, however, with the recent developments in deep learning, this field of study seems to hold huge potential for improved accuracy. This study presents an effective method that uses image processing and deep… More >

  • Open Access

    CORRECTION

    Correction: Applying Customized Convolutional Neural Network to Kidney Image Volumes for Kidney Disease Detection

    Ali Altalbe1,2,*, Abdul Rehman Javed3

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 1075-1081, 2024, DOI:10.32604/csse.2024.054179 - 17 July 2024

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Developing a Model for Parkinson’s Disease Detection Using Machine Learning Algorithms

    Naif Al Mudawi*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4945-4962, 2024, DOI:10.32604/cmc.2024.048967 - 20 June 2024

    Abstract Parkinson’s disease (PD) is a chronic neurological condition that progresses over time. People start to have trouble speaking, writing, walking, or performing other basic skills as dopamine-generating neurons in some brain regions are injured or die. The patient’s symptoms become more severe due to the worsening of their signs over time. In this study, we applied state-of-the-art machine learning algorithms to diagnose Parkinson’s disease and identify related risk factors. The research worked on the publicly available dataset on PD, and the dataset consists of a set of significant characteristics of PD. We aim to apply… More >

  • Open Access

    ARTICLE

    Model Agnostic Meta-Learning (MAML)-Based Ensemble Model for Accurate Detection of Wheat Diseases Using Vision Transformer and Graph Neural Networks

    Yasir Maqsood1, Syed Muhammad Usman1,*, Musaed Alhussein2, Khursheed Aurangzeb2,*, Shehzad Khalid3, Muhammad Zubair4

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2795-2811, 2024, DOI:10.32604/cmc.2024.049410 - 15 May 2024

    Abstract Wheat is a critical crop, extensively consumed worldwide, and its production enhancement is essential to meet escalating demand. The presence of diseases like stem rust, leaf rust, yellow rust, and tan spot significantly diminishes wheat yield, making the early and precise identification of these diseases vital for effective disease management. With advancements in deep learning algorithms, researchers have proposed many methods for the automated detection of disease pathogens; however, accurately detecting multiple disease pathogens simultaneously remains a challenge. This challenge arises due to the scarcity of RGB images for multiple diseases, class imbalance in existing… More >

  • Open Access

    ARTICLE

    Time and Space Efficient Multi-Model Convolution Vision Transformer for Tomato Disease Detection from Leaf Images with Varied Backgrounds

    Ankita Gangwar1, Vijaypal Singh Dhaka1, Geeta Rani2,*, Shrey Khandelwal1, Ester Zumpano3,4, Eugenio Vocaturo3,4

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 117-142, 2024, DOI:10.32604/cmc.2024.048119 - 25 April 2024

    Abstract A consumption of 46.9 million tons of processed tomatoes was reported in 2022 which is merely 20% of the total consumption. An increase of 3.3% in consumption is predicted from 2024 to 2032. Tomatoes are also rich in iron, potassium, antioxidant lycopene, vitamins A, C and K which are important for preventing cancer, and maintaining blood pressure and glucose levels. Thus, tomatoes are globally important due to their widespread usage and nutritional value. To face the high demand for tomatoes, it is mandatory to investigate the causes of crop loss and minimize them. Diseases are… More >

Displaying 11-20 on page 2 of 51. Per Page