Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (70)
  • Open Access


    A Brief Review of Surface Modification of Carbonyl Iron Powders (CIPs) for Magnetorheological Fluid Applications


    Journal of Polymer Materials, Vol.40, No.3-4, pp. 191-204, 2023, DOI:10.32381/JPM.2023.40.3-4.5

    Abstract Magnetorheological fluids (MRFs) is a smart fluid system that exhibits swift and reversible alterations in their rheological characteristics when exposed to an external magnetic field. MRFs are used for applications in various areas, including automotive systems, robotics, aerospace, and civil engineering. The performance of MRFs depends on the behavior of the dispersed magnetic particles, necessitating thoughtful consideration of particle traits to optimize fluid performance. Carbonyl Iron Powders (CIPs), high purity iron (>98%) reduced from penta carbonyl iron, are widely employed in MRFs due to their exceptional magnetic characteristics. Nevertheless, the innate surfaces of CIPs tend… More >

  • Open Access


    The Turbulent Schmidt Number for Transient Contaminant Dispersion in a Large Ventilated Room Using a Realizable k-ε Model

    Fei Wang, Qinpeng Meng, Jinchi Zhao, Xin Wang, Yuhong Liu, Qianru Zhang*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 829-846, 2024, DOI:10.32604/fdmp.2023.026917

    Abstract Buildings with large open spaces in which chemicals are handled are often exposed to the risk of explosions. Computational fluid dynamics is a useful and convenient way to investigate contaminant dispersion in such large spaces. The turbulent Schmidt number (Sct) concept has typically been used in this regard, and most studies have adopted a default value. We studied the concentration distribution for sulfur hexafluoride (SF6) assuming different emission rates and considering the effect of Sct. Then we examined the same problem for a light gas by assuming hydrogen gas (H2) as the contaminant. When SF6 was considered as More >

  • Open Access


    A Spatiotemporal Nonlocal Model for Overall Dynamics of Composites and Its Analytical Solutions

    Linjuan Wang1,*, Jianxiang Wang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09355

    Abstract The prediction of overall dynamics of composite materials has been an intriguing research topic more than a century, and numerous approaches have been developed for this topic. One of the most successful representatives is the classical micromechanical models which assume that the behavior of a composite is the same as its constituents except for the difference in mechanical properties, e.g., effective moduli. With the development of advanced composite materials in recent years, especially metamaterials, it is found that the classical micromechanical models cannot describe complex dynamic responses of composites such as the dispersion and bandgaps… More >

  • Open Access


    Classification d’aires de dispersion à l’aide d’un facteur géographique

    Application à la dialectologie

    Clément Chagnaud1,3, Philippe Garat2, Paule-Annick Davoine1,3, Guylaine Brun-Trigaud4

    Revue Internationale de Géomatique, Vol.30, No.1, pp. 67-83, 2020, DOI:10.3166/rig.2020.00107

    Abstract Nous proposons une procédure d’analyse statistique multidimensionnelle couplant des méthodes de projection et de classification pour identifier des ensembles cohérents au sein d’un corpus d’entités géographiques surfaciques que l’on appelle aires de dispersion. La méthodologie intègre un facteur géographique dans la construction de l’espace de représentation pour la projection des données. En appliquant ces méthodes sur des données géolinguistiques, nous pouvons identifier et expliquer de nouvelles structures spatiales au sein d’un corpus d’aires de dispersion de traits linguistiques. More >

  • Open Access


    Effect of Polyisobutylene Succinimide on the Physical Stability of an Environmentally Friendly Pesticide Oil Dispersion Suspension

    Liying Wang*, Junzhi Liu, Chong Gao, Xinxin Yan

    Journal of Renewable Materials, Vol.11, No.6, pp. 2679-2694, 2023, DOI:10.32604/jrm.2023.025569

    Abstract Oil dispersible suspension concentrates are safe, green, and environmentally friendly formulations. Problems such as layering, pasting, and bottoming are frequently encountered during the production, storage, and transportation process. Polyisobutylene succinimide functions as a dispersant and exhibits great potential to improve the physical stability of the oil dispersible suspension concentrate. From a microscopic perspective, the sorption characteristics of the polyisobutylene succinimide dispersant T151 on penoxsulam particle surfaces were comprehensively evaluated with XPS, FTIR, and SEM. The T151 adsorption procedure complied with a pseudo-second-order kinetic adsorption model, and it was a kind of physical sorption with an… More > Graphic Abstract

    Effect of Polyisobutylene Succinimide on the Physical Stability of an Environmentally Friendly Pesticide Oil Dispersion Suspension

  • Open Access


    A Variational Multiscale Method for Particle Dispersion Modeling in the Atmosphere

    Y. Nishio1,*, B. Janssens1, K. Limam2, J. van Beeck3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 743-753, 2023, DOI:10.32604/fdmp.2022.021848

    Abstract A LES model is proposed to predict the dispersion of particles in the atmosphere in the context of Chemical, Biological, Radiological and Nuclear (CBRN) applications. The code relies on the Finite Element Method (FEM) for both the fluid and the dispersed solid phases. Starting from the Navier-Stokes equations and a general description of the FEM strategy, the Streamline Upwind Petrov-Galerkin (SUPG) method is formulated putting some emphasis on the related assembly matrix and stabilization coefficients. Then, the Variational Multiscale Method (VMS) is presented together with a detailed illustration of its algorithm and hierarchy of computational More >

  • Open Access


    Pollution Dispersion in Urban Street Canyons with Green Belts

    Xiaoxuan Zhu1, Xueyan Wang2, Li Lei1,*, Yuting Zhao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.2, pp. 661-679, 2022, DOI:10.32604/cmes.2022.020427

    Abstract In this study, numerical simulations were used to explore the effects of roadside green belt, urban street spatial layout, and wind speed on vehicle exhaust emission diffusion in street canyon. The diffusion of different sized particles in the street canyon and the influence of wind speed were investigated. The individual daily average pollutant intake was used to evaluate the exposure level in a street canyon microenvironment. The central and leeward green belts of the road were the most conducive to the diffusion of pollutants, while the positioning of the green belts both sides of a More >

  • Open Access


    Simulation Analysis of Ammonia Leakage and Dispersion in a Large-Scale Refrigeration System

    Jianlu Cheng1, Kaiyong Hu1,*, Jiang Shen1, Lu Jia1,2, Rui Niu1, Zhaoxian Yang3

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 1049-1066, 2022, DOI:10.32604/fdmp.2022.019007

    Abstract The use of ammonia in large-scale refrigeration systems (such as those used for a stadium) requires adequate ammonia leakage prevention mechanisms are put in place. In the present study, numerical simulations have been conducted to study the dispersion law in the ammonia machinery room of the refrigeration system for the 2022 Beijing Winter Olympics. The wind speed, and release location have been varied to investigate their effects on the dispersion profile. Different positions of the leakage points in the ammonia storage tank have been found to lead to different areas affected accordingly. In general, the More >

  • Open Access


    New Hybrid EWMA Charts for Efficient Process Dispersion Monitoring with Application in Automobile Industry

    Xuechen Liu1, Majid Khan2, Zahid Rasheed3, Syed Masroor Anwar4,*, Muhammad Arslan5

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.2, pp. 1171-1195, 2022, DOI:10.32604/cmes.2022.019199

    Abstract The EWMA charts are the well-known memory-type charts used for monitoring the small-to-intermediate shifts in the process parameters (location and/or dispersion). The hybrid EWMA (HEWMA) charts are enhanced version of the EWMA charts, which effectively monitor the process parameters. This paper aims to develop two new uppersided HEWMA charts for monitoring shifts in process variance, i.e., HEWMA1 and HEWMA2 charts. The design structures of the proposed HEWMA1 and HEWMA2 charts are based on the concept of integrating the features of two EWMA charts. The HEWMA1 and HEWMA2 charts plotting statistics are developed using one EWMA… More >

  • Open Access


    Mass-Stiffness Templates for Cubic Structural Elements

    Carlos A. Felippa*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1209-1241, 2021, DOI:10.32604/cmes.2021.016803

    Abstract This paper considers Lagrangian finite elements for structural dynamics constructed with cubic displacement shape functions. The method of templates is used to investigate the construction of accurate mass-stiffness pairs. This method introduces free parameters that can be adjusted to customize elements according to accuracy and rank-sufficiency criteria. One- and two-dimensional Lagrangian cubic elements with only translational degrees of freedom (DOF) carry two additional nodes on each side, herein called side nodes or SN. Although usually placed at the third-points, the SN location may be adjusted within geometric limits. The adjustment effect is studied in detail… More >

Displaying 1-10 on page 1 of 70. Per Page