Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    A Real-Time Deep Learning Approach for Electrocardiogram-Based Cardiovascular Disease Prediction with Adaptive Drift Detection and Generative Feature Replay

    Soumia Zertal1,2,*, Asma Saighi1,2, Sofia Kouah1,2, Souham Meshoul3,*, Zakaria Laboudi2,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3737-3782, 2025, DOI:10.32604/cmes.2025.068558 - 30 September 2025

    Abstract Cardiovascular diseases (CVDs) continue to present a leading cause of mortality worldwide, emphasizing the importance of early and accurate prediction. Electrocardiogram (ECG) signals, central to cardiac monitoring, have increasingly been integrated with Deep Learning (DL) for real-time prediction of CVDs. However, DL models are prone to performance degradation due to concept drift and to catastrophic forgetting. To address this issue, we propose a real-time CVDs prediction approach, referred to as ADWIN-GFR that combines Convolutional Neural Network (CNN) layers, for spatial feature extraction, with Gated Recurrent Units (GRU), for temporal modeling, alongside adaptive drift detection and… More > Graphic Abstract

    A Real-Time Deep Learning Approach for Electrocardiogram-Based Cardiovascular Disease Prediction with Adaptive Drift Detection and Generative Feature Replay

  • Open Access

    ARTICLE

    Leveraging Safe and Secure AI for Predictive Maintenance of Mechanical Devices Using Incremental Learning and Drift Detection

    Prashanth B. S1,*, Manoj Kumar M. V.2,*, Nasser Almuraqab3, Puneetha B. H4

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4979-4998, 2025, DOI:10.32604/cmc.2025.060881 - 19 May 2025

    Abstract Ever since the research in machine learning gained traction in recent years, it has been employed to address challenges in a wide variety of domains, including mechanical devices. Most of the machine learning models are built on the assumption of a static learning environment, but in practical situations, the data generated by the process is dynamic. This evolution of the data is termed concept drift. This research paper presents an approach for predicting mechanical failure in real-time using incremental learning based on the statistically calculated parameters of mechanical equipment. The method proposed here is applicable… More >

  • Open Access

    ARTICLE

    Explainable Artificial Intelligence-Based Model Drift Detection Applicable to Unsupervised Environments

    Yongsoo Lee, Yeeun Lee, Eungyu Lee, Taejin Lee*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1701-1719, 2023, DOI:10.32604/cmc.2023.040235 - 30 August 2023

    Abstract Cybersecurity increasingly relies on machine learning (ML) models to respond to and detect attacks. However, the rapidly changing data environment makes model life-cycle management after deployment essential. Real-time detection of drift signals from various threats is fundamental for effectively managing deployed models. However, detecting drift in unsupervised environments can be challenging. This study introduces a novel approach leveraging Shapley additive explanations (SHAP), a widely recognized explainability technique in ML, to address drift detection in unsupervised settings. The proposed method incorporates a range of plots and statistical techniques to enhance drift detection reliability and introduces a… More >

  • Open Access

    ARTICLE

    Drift Detection Method Using Distance Measures and Windowing Schemes for Sentiment Classification

    Idris Rabiu1,3,*, Naomie Salim2, Maged Nasser1,4, Aminu Da’u1, Taiseer Abdalla Elfadil Eisa5, Mhassen Elnour Elneel Dalam6

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6001-6017, 2023, DOI:10.32604/cmc.2023.035221 - 28 December 2022

    Abstract Textual data streams have been extensively used in practical applications where consumers of online products have expressed their views regarding online products. Due to changes in data distribution, commonly referred to as concept drift, mining this data stream is a challenging problem for researchers. The majority of the existing drift detection techniques are based on classification errors, which have higher probabilities of false-positive or missed detections. To improve classification accuracy, there is a need to develop more intuitive detection techniques that can identify a great number of drifts in the data streams. This paper presents… More >

  • Open Access

    ARTICLE

    Sentiment Drift Detection and Analysis in Real Time Twitter Data Streams

    E. Susi*, A. P. Shanthi

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 3231-3246, 2023, DOI:10.32604/csse.2023.032104 - 21 December 2022

    Abstract Handling sentiment drifts in real time twitter data streams are a challenging task while performing sentiment classifications, because of the changes that occur in the sentiments of twitter users, with respect to time. The growing volume of tweets with sentiment drifts has led to the need for devising an adaptive approach to detect and handle this drift in real time. This work proposes an adaptive learning algorithm-based framework, Twitter Sentiment Drift Analysis-Bidirectional Encoder Representations from Transformers (TSDA-BERT), which introduces a sentiment drift measure to detect drifts and a domain impact score to adaptively retrain the… More >

  • Open Access

    ARTICLE

    An Optimal Big Data Analytics with Concept Drift Detection on High-Dimensional Streaming Data

    Romany F. Mansour1,*, Shaha Al-Otaibi2, Amal Al-Rasheed2, Hanan Aljuaid3, Irina V. Pustokhina4, Denis A. Pustokhin5

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 2843-2858, 2021, DOI:10.32604/cmc.2021.016626 - 06 May 2021

    Abstract Big data streams started becoming ubiquitous in recent years, thanks to rapid generation of massive volumes of data by different applications. It is challenging to apply existing data mining tools and techniques directly in these big data streams. At the same time, streaming data from several applications results in two major problems such as class imbalance and concept drift. The current research paper presents a new Multi-Objective Metaheuristic Optimization-based Big Data Analytics with Concept Drift Detection (MOMBD-CDD) method on High-Dimensional Streaming Data. The presented MOMBD-CDD model has different operational stages such as pre-processing, CDD, and… More >

Displaying 1-10 on page 1 of 6. Per Page