Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (181)
  • Open Access

    ARTICLE

    The Impact of Ink-Jet Droplets on a Paper-Like Structure

    M. Do-Quang1, A. Carlson1, G. Amberg1

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.4, pp. 389-402, 2011, DOI:10.3970/fdmp.2011.007.389

    Abstract Inkjet technology has been recognized as one of the most successful and promising micro-system technologies. The wide application areas of printer heads and the increasing demand of high quality prints are making ink consumption and print see-through important topics in the inkjet technology. In the present study we investigate numerically the impact of ink droplets onto a porous material that mimics the paper structure. The mathematical framework is based on a free energy formulation, coupling the Cahn-Hilliard and Navier Stokes equations, for the modelling of the two-phase flow. The case studied here consists of a More >

  • Open Access

    ARTICLE

    A Computational Study of High-Speed Droplet Impact

    T. Sanada1, K. Ando2, T. Colonius2

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.4, pp. 329-340, 2011, DOI:10.3970/fdmp.2011.007.329

    Abstract When a droplet impacts a solid surface at high speed, the contact periphery expands very quickly and liquid compressibility plays an important role in the initial dynamics and the formation of lateral jets. The high speed impact results in high pressures that can account for the surface erosion. In this study, we numerically investigated a high speed droplet impacts on a solid wall. The multicomponent Euler equations with the stiffened equation of state are computed using a FV-WENO scheme with an HLLC Riemann solver that accurately captures shocks and interfaces. In order to compare the More >

  • Open Access

    ARTICLE

    Viscoelastic Drop Deformation in a Micro-Contraction

    Malcolm R. Davidson1, Dalton J.E. Harvie1

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.3, pp. 317-328, 2011, DOI:10.3970/fdmp.2011.007.317

    Abstract A volume-of-fluid numerical method, adapted by the authors [Harvie, Cooper-White and Davidson (2008)] to simulate the flow of viscoelastic fluids, is used to predict deformation of a viscoelastic droplet carried by an immiscible Newtonian liquid through an axisymmetric microfluidic contraction-expansion. Values of the capillary number and elasticity number are chosen based on corresponding values for a rectangular contraction for which a reentrant cavity at the rear of the drop and subsequent encapsulation behaviour was observed experimentally by Harvie, Cooper-White and Davidson (2008). A reentrant cavity, similar to the observed one, is predicted; however, encapsulation is More >

  • Open Access

    ARTICLE

    Binary Collisions of Immiscible Liquid Drops for Liquid Encapsulation

    Carole Planchette1, Elise Lorenceau1, Günter Brenn2

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.3, pp. 279-302, 2011, DOI:10.3970/fdmp.2011.007.279

    Abstract This work is dedicated to a general description of collisions between two drops of immiscible liquids. Our approach is mainly experimental and allows us to describe the outcomes of such collisions according to a set of relevant parameters. Varying the relative velocity U as well as the impact parameter X we can build for each pair of investigated liquids a nomogram X,U showing three possible regimes: coalescence, head-on separation and off-center separation. In this paper, we also study the influence of the liquid properties, i.e. viscosity, density, surface and interfacial tensions using a set of… More >

  • Open Access

    ARTICLE

    Numerical Simulation of an Axisymmetric Compound Droplet by Three-Fluid Front-Tracking Method

    S. Homma1, M. Yokotsuka1, T. Tanaka1, K. Moriguchi1, J. Koga1, G. Tryggvason2

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.3, pp. 231-240, 2011, DOI:10.3970/fdmp.2011.007.231

    Abstract We develop a three-fluid front-tracking method in order to simulate the motion of an axisymmetry compound droplet, which consists of three immiscible fluids separated by two different interfaces. The two interfaces of the compound droplet are represented by two different sets of the front-tracking elements immersed on the Eulerian grid mesh, where the velocities and the pressure are calculated. The density and viscosity profiles with jumps at the interfaces are successfully determined from the location and the connection information of the front-tracking elements. The motion of a compound droplet is simulated on axisymmetric cylindrical coordinates. More >

  • Open Access

    ARTICLE

    Droplet Behavior within an LPP Ambiance

    M. Chrigui1,2, L. Schneider1, A. Zghal2, A. Sadiki1, J. Janicka1

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.4, pp. 399-408, 2010, DOI:10.3970/fdmp.2010.006.399

    Abstract This paper deals with the numerical simulation of droplet dispersion and evaporation within an LPP (Lean Premix Prevaporized) burner. The Eulerian-Lagrangian approach was used for this purpose, and a fully two way-coupling was accounted for. For the phase transition, a non-equilibrium evaporation model was applied that differs strongly from the equilibrium one where there are high evaporation rates. The non-equilibrium conditions were fulfilled in the investigated configuration, as the droplets at the inlet had a mean diameter of 50mm. The numerical results of water droplet velocities, corresponding fluctuations, and diameters were compared with experimental data. More >

  • Open Access

    ARTICLE

    A Phase Field Description of Spatio-Temporal Behavior in Thin Liquid Layers

    Rodica Borcia1, Michael Bestehorn2

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.1, pp. 1-12, 2010, DOI:10.3970/fdmp.2010.006.001

    Abstract We study numerically the fully nonlinear evolution of thin liquid films on solid supports in three spatial dimensions. A phase field model is used as mathematical tool. Homogeneous and inhomogeneous substrates are taken into account. For flat homogeneous substrates the stability of thin liquid layers is investigated under the action of gravity. The coarsening process at the solid boundary can be controlled on inhomogeneous substrates. On substrates chemically patterned in an adequate way with hydrophobic and hydrophilic spots (functional surfaces), one can obtain stable regular liquid droplets as final dewetted morphology. More >

  • Open Access

    ARTICLE

    On the Contact Characteristics between Droplet and Microchip/Binding Site for Self-Alignment

    Wen-Hwa Chen1,2, Tsung-Yu Huang1

    CMC-Computers, Materials & Continua, Vol.20, No.1, pp. 63-84, 2010, DOI:10.3970/cmc.2010.020.063

    Abstract The contact characteristics between a droplet and a microchip/binding site strongly affect the accuracy of self-alignment in the self-assembly of micro-electronic-mechanical systems. This study is mainly to implement the Surface Evolver Program, which is commonly adopted for studying surface shaped by surface tension and other energies, to investigate comprehensively the contact characteristics between the small droplet and the microchip/binding site. The details of changes in the contact line and the contact area when the microchip is subjected to translation, compression, yawing and rolling are drawn. The three-dimensional deformation of the droplet between the microchip and… More >

  • Open Access

    ABSTRACT

    Three-dimensional simulations on the formation of droplets in a T-type microchannel

    Jr-Ming Miao1,2, Fuh-Lin Lih3, Yi-Chun Liou4, Hsiu-Kai Chen1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.12, No.1, pp. 33-34, 2009, DOI:10.3970/icces.2009.012.033

    Abstract To date, miniaturization of fluid handling and fluid analysis devices in the medicine engineering has been emerging in the interdisciplinary research field of micro-fluidics, as a result of miniaturization of the detective device to allow parallelization as well as to reduce analysis time and sample volume. Micro-total-analysis-system (μ -TAS) researches aimed at developing miniaturized and integrated ``lab-on-a-chip'' devices for biochemical analysis applications. Droplet-based micro-mixer is the one of the key components in the developing of μ-TAS. Numerical approach on the dynamic formation of water droplets in a T-type microchannel with a 200μm × 50μm rectangular cross section… More >

  • Open Access

    ABSTRACT

    Effects of throttling on the spray injection performance in a small LRE-injector

    Hun Jung1, Jin Seok Kim1, Jeong Soo Kim2, Jeong Park3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.11, No.4, pp. 125-126, 2009, DOI:10.3970/icces.2009.011.125

    Abstract An injector plays an important role in the process of an efficient combustion in liquid-rocket engines (LRE) because it affects the evaporation rate of liquid fuel through spatial distribution and atomization of spray droplets. This paper is focused on the injection performance of a small LRE-Injector by employing the spray characteristic parameters made up of the velocity components, mean diameter, turbulence intensity, span (width of drop size distribution), number density, and volume flux of spray droplets. An experimental investigation is carried out with the aid of a dual-mode phase Doppler anemometry (DPDA) according to the… More >

Displaying 151-160 on page 16 of 181. Per Page