Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (197)
  • Open Access

    ARTICLE

    Thermocapillary Motion of a Spherical Drop in a Spherical Cavity

    Tai C. Lee1, Huan J. Keh2

    CMES-Computer Modeling in Engineering & Sciences, Vol.93, No.5, pp. 317-333, 2013, DOI:10.3970/cmes.2013.093.317

    Abstract A theoretical study of the thermocapillary migration of a fluid sphere located at an arbitrary position inside a spherical cavity is presented in the quasisteady limit of small Reynolds and Marangoni numbers. The applied temperature gradient is perpendicular to the line through the drop and cavity centers. The general solutions to the energy and momentum equations governing the system are constructed from the superposition of their fundamental solutions in the spherical coordinates originating from the two centers, and the boundary conditions are satisfied by a multipole collocation method. Results for the thermocapillary migration velocity of… More >

  • Open Access

    ARTICLE

    Low and High Velocity Impact Studies on Fabric Reinforced Concrete Panels

    Smitha Gopinath1, C.K. Madheswaran1, A. Rama Ch,ra Murthy1, Nagesh. R. Iyer2, Barkavi.T3

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.2, pp. 151-172, 2013, DOI:10.3970/cmes.2013.092.151

    Abstract This paper presents the details of experimental and numerical investigations performed on fabric reinforced concrete (FABcrete) panels under impact loading. Experimental investigations have been carried out using drop weight impact on a square FABcrete panel to study the damage, failure mode and acceleration. The drop weight of 20 kg is used for the study and drop heights have been varied as 100mm, 200mm and 300mm. Numerical simulation of the drop weight impact tests on FABcrete panels have been carried out and observed that there is a good correlation between experimental and numerical predictions. It is More >

  • Open Access

    ARTICLE

    Computational Studies on the Transient Electrohydrodynamics of a Liquid Drop

    Md. Abdul Halim1, Asghar Esmaeeli2

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.4, pp. 435-460, 2013, DOI:10.3970/fdmp.2013.009.435

    Abstract This study aims to gain a detailed understanding of the transient behavior of solitary liquid drops in electric fields at finite Reynolds number. A front tracking/finite difference method, in conjunction with Taylor-Melcher leaky dielectric model, is used to solve the governing electrohydrodynamic equations. The evolution of the flow field and drop deformation is studied for a few representative fluid systems, corresponding to the different regions of the deformation-circulation map. It is shown that for the range of the physical parameters used here, the deformationtime history is governed by one time scale while the fluid flow More >

  • Open Access

    ARTICLE

    Evaluation of some of the existing models for droplet and spray/wall interactions

    Davood Kalantari1

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.2, pp. 169-182, 2013, DOI:10.3970/fdmp.2013.009.169

    Abstract In this study, a critical summary of existing spray/wall interaction models is given in synergy with a review of available experimental data. In particular, special attention is devoted to the limitations, difficulties and complexities of the most used approaches in the literatures. An attempt is also made to indicate the bottlenecks and criticalities which typically arise when investigators try to extend results obtained for isolated droplets to the more complex dynamics produced by spray impacts. More >

  • Open Access

    ARTICLE

    Taguching the Atmospheric Plasma Spraying Process: Influence of Processing Factors on Droplet Impact Properties Obtained on Dense ZrO2 and H2Ar75% Plasma Gas

    Ridha Djebali1, Mohsen Toujani2, Bernard Pateyron3

    CMC-Computers, Materials & Continua, Vol.37, No.3, pp. 147-160, 2013, DOI:10.3970/cmc.2013.037.147

    Abstract In this paper a study of the atmospheric plasma spraying process was conducted. The Jets&Poudres code was used to solve the partial differential equations for the conservation of mass, momentum and energy involved in the problem together with the K-e turbulent model. The Taguchi technique was used to study the influence of processing factors on droplet impact properties obtained on dense zirconia (ZrO2) under H2Ar75% plasma gas that allow optimal functioning condition. The test of the operating parameters for the studied ranges showed that the "thermal power" factor plays a key role on the state of sprayed More >

  • Open Access

    ARTICLE

    A CRITICAL REVIEW OF RECENT INVESTIGATIONS ON TWO-PHASE PRESSURE DROP IN FLOW BOILING MICRO-CHANNELS

    Sira Saisorna,b, Somchai Wongwisesb,c,∗

    Frontiers in Heat and Mass Transfer, Vol.3, No.1, pp. 1-7, 2012, DOI:10.5098/hmt.v3.1.3007

    Abstract Two-phase pressure drop during flow boiling has been studied for several decades. Obviously, the publications available on micro-channels are relatively small compared with those for ordinarily sized channels. Although the use of micro-channels yields several advantages, the pressure drop taking p lace in these extremely small channels is higher than that in the ordinarily sized channels because of the increased wall friction. The knowledge of the two-phase pressure drop characteristics in addition to heat transfer phenomena is essential to the design and evaluation of the micro-systems. In this paper, recent research on the flow boiling More >

  • Open Access

    ARTICLE

    PRESSURE DROP MEASUREMENTS WITH BOILING IN DIVERGING MICROCHANNEL

    Amit Agrawala,*, V.S. Duryodhana, S. G. Singhb

    Frontiers in Heat and Mass Transfer, Vol.3, No.1, pp. 1-7, 2012, DOI:10.5098/hmt.v3.1.3005

    Abstract An experimental study of flow boiling through diverging microchannels has been carried out in this work, with the aim of exploring reduction in flow instabilities during boiling in diverging microchannels. Effect of mass flux, heat flux and divergence angle on two phase pressure drop has been studied using deionized water as the working fluid. The experiments are carried out on three test sections with divergence angle of 4, 8 and 12 deg with nearly constant hydraulic diameter (146, 154 and 157 µm respectively), for inlet mass flux and heat flux range of 117 - 1197 kg/m2 More >

  • Open Access

    ARTICLE

    MODELLING OF COMBINED HEAT AND MASS TRANSFER OF WATER DROPLETS IN THERMAL TECHNOLOGY EQUIPMENT

    Gintautas Miliauskas*, Stasys Sinkunas, Kristina Norvaisiene, Kestutis Sinkunas

    Frontiers in Heat and Mass Transfer, Vol.3, No.2, pp. 1-6, 2012, DOI:10.5098/hmt.v3.2.3006

    Abstract Water droplet evaporation process is numerically modelled under various heat and mass transfer conditions. Regularities of heat transfer process interaction are examined. Modelling in this work was performed using the combined analytical – numerical method to investigate heat and mass transfer in the two-phase droplets-gas flow system. The influence of forced liquid circulation on the thermal state of droplets is taken into account by the effective coefficient of thermal conductivity. Calculating the rate of droplet evaporation and the intensity of convective heating, the influence of the Stefan’s hydrodynamic flow is taken into account. Balancing energy More >

  • Open Access

    ARTICLE

    Seasonal testicular changes in Dendropsophus minutus Peters, 1872 (Anura, Hylidae)

    ADELINA FERREIRA1,* AND MAHMOUD MEHANNA2

    BIOCELL, Vol.36, No.2, pp. 57-62, 2012, DOI:10.32604/biocell.2012.36.057

    Abstract The reproductive cycle in anurans may be either continuous or discontinuous. These differences may be connected to seasonal climate changes and/or to anthropic activity. Forty adult male individuals of the Dendropsophus minutus species were collected during one year, in the municipality of Chapada dos Guimarães (Mato Grosso, Brazil). The testicles were studied under light and transmission electron microscopy. No variations were observed when the diameter of the seminiferous tubules and the thickness of the interstitial tissue were studied. However, changes in spermatogenesis were conspicuous and indicated that the reproductive cycle of D. minutus in Chapada dos Guimarães More >

  • Open Access

    ARTICLE

    Optimization and comparison of two different 3D culture methods to prepare cell aggregates as a bioink for organ printing

    RANA IMANI1, SHAHRIAR HOJJATI EMAMI1, HOSSEIN FAKHRZADEH2, NAFISEH BAHEIRAEI1, ALI M SHARIFI* 2,3,4

    BIOCELL, Vol.36, No.1, pp. 37-45, 2012, DOI:10.32604/biocell.2012.36.037

    Abstract The ultimate goal of tissue engineering is to design and fabricate functional human tissues that are similar to natural cells and are capable of regeneration. Preparation of cell aggregates is one of the important steps in 3D tissue engineering technology, particularly in organ printing. Two simple methods, hanging drop (HD) and conical tube (CT) were utilized to prepare cell aggregates. The size and viability of the aggregates obtained at different initial cell densities and pre-culture duration were compared. The proliferative ability of the cell aggregates and their ability to spread in culture plates were also… More >

Displaying 151-160 on page 16 of 197. Per Page