Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (186)
  • Open Access

    ARTICLE

    Droplet Behavior within an LPP Ambiance

    M. Chrigui1,2, L. Schneider1, A. Zghal2, A. Sadiki1, J. Janicka1

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.4, pp. 399-408, 2010, DOI:10.3970/fdmp.2010.006.399

    Abstract This paper deals with the numerical simulation of droplet dispersion and evaporation within an LPP (Lean Premix Prevaporized) burner. The Eulerian-Lagrangian approach was used for this purpose, and a fully two way-coupling was accounted for. For the phase transition, a non-equilibrium evaporation model was applied that differs strongly from the equilibrium one where there are high evaporation rates. The non-equilibrium conditions were fulfilled in the investigated configuration, as the droplets at the inlet had a mean diameter of 50mm. The numerical results of water droplet velocities, corresponding fluctuations, and diameters were compared with experimental data. More >

  • Open Access

    ARTICLE

    A Phase Field Description of Spatio-Temporal Behavior in Thin Liquid Layers

    Rodica Borcia1, Michael Bestehorn2

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.1, pp. 1-12, 2010, DOI:10.3970/fdmp.2010.006.001

    Abstract We study numerically the fully nonlinear evolution of thin liquid films on solid supports in three spatial dimensions. A phase field model is used as mathematical tool. Homogeneous and inhomogeneous substrates are taken into account. For flat homogeneous substrates the stability of thin liquid layers is investigated under the action of gravity. The coarsening process at the solid boundary can be controlled on inhomogeneous substrates. On substrates chemically patterned in an adequate way with hydrophobic and hydrophilic spots (functional surfaces), one can obtain stable regular liquid droplets as final dewetted morphology. More >

  • Open Access

    ARTICLE

    On the Contact Characteristics between Droplet and Microchip/Binding Site for Self-Alignment

    Wen-Hwa Chen1,2, Tsung-Yu Huang1

    CMC-Computers, Materials & Continua, Vol.20, No.1, pp. 63-84, 2010, DOI:10.3970/cmc.2010.020.063

    Abstract The contact characteristics between a droplet and a microchip/binding site strongly affect the accuracy of self-alignment in the self-assembly of micro-electronic-mechanical systems. This study is mainly to implement the Surface Evolver Program, which is commonly adopted for studying surface shaped by surface tension and other energies, to investigate comprehensively the contact characteristics between the small droplet and the microchip/binding site. The details of changes in the contact line and the contact area when the microchip is subjected to translation, compression, yawing and rolling are drawn. The three-dimensional deformation of the droplet between the microchip and… More >

  • Open Access

    ABSTRACT

    Three-dimensional simulations on the formation of droplets in a T-type microchannel

    Jr-Ming Miao1,2, Fuh-Lin Lih3, Yi-Chun Liou4, Hsiu-Kai Chen1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.12, No.1, pp. 33-34, 2009, DOI:10.3970/icces.2009.012.033

    Abstract To date, miniaturization of fluid handling and fluid analysis devices in the medicine engineering has been emerging in the interdisciplinary research field of micro-fluidics, as a result of miniaturization of the detective device to allow parallelization as well as to reduce analysis time and sample volume. Micro-total-analysis-system (μ -TAS) researches aimed at developing miniaturized and integrated ``lab-on-a-chip'' devices for biochemical analysis applications. Droplet-based micro-mixer is the one of the key components in the developing of μ-TAS. Numerical approach on the dynamic formation of water droplets in a T-type microchannel with a 200μm × 50μm rectangular cross section… More >

  • Open Access

    ABSTRACT

    Effects of throttling on the spray injection performance in a small LRE-injector

    Hun Jung1, Jin Seok Kim1, Jeong Soo Kim2, Jeong Park3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.11, No.4, pp. 125-126, 2009, DOI:10.3970/icces.2009.011.125

    Abstract An injector plays an important role in the process of an efficient combustion in liquid-rocket engines (LRE) because it affects the evaporation rate of liquid fuel through spatial distribution and atomization of spray droplets. This paper is focused on the injection performance of a small LRE-Injector by employing the spray characteristic parameters made up of the velocity components, mean diameter, turbulence intensity, span (width of drop size distribution), number density, and volume flux of spray droplets. An experimental investigation is carried out with the aid of a dual-mode phase Doppler anemometry (DPDA) according to the… More >

  • Open Access

    ABSTRACT

    Transient hydroplaning simulation of automotive tires using the fluid-structure interaction finite element method

    S.T. Jenq1,2, Y.S. Chiu2, Y.C. Ting2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.9, No.4, pp. 263-264, 2009, DOI:10.3970/icces.2009.009.263

    Abstract The purpose of this work is to study the transient hydroplaning behavior of inflated pneumatic 195/65R15 radial tires with various tread patterns and the tires were loaded with a quarter car weight. The tires were analyzed numerically to roll over a water film with a thickness of 5 mm, 10 mm and 15 mm on top of a flat-road pavement. Current tire structure contains the outer rubber tread and the inner advanced reinforcing composite layers. The Mooney-Rivlin constitutive law and the classical laminated theory (CLT) were used to describe the behavior of the large-deformable rubber… More >

  • Open Access

    ABSTRACT

    Kinetics of the ordered phase growth across the phase separation of a multi-component liquid crystalline mixture

    Sergei Bronnikov1, Sergei Kostromin, Vyacheslav Zuev

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.9, No.4, pp. 207-214, 2009, DOI:10.3970/icces.2009.009.207

    Abstract Kinetics of the ordered phase growth in a melted multi-component liquid crystalline mixture subjected to a deep cooling was studied using polarizing optical microscopy. The droplets of the ordered phase revealed in the optical images across the phase transition were segmented and treated statistically. In the resulting histograms, two overlapping statistical ensembles related to two main components of the mixture were recognized. These ensembles were successfully described using principles of irreversible thermodynamics and the mean droplet diameters within both ensembles were determined. Analysis of the mean droplet diameter as a function of time allowed recognition More >

  • Open Access

    ARTICLE

    Liquid Droplet Impact onto Flat and Rigid Surfaces: Initial Ejection Velocity of the Lamella

    Davood Kalantari1

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.1, pp. 81-92, 2009, DOI:10.3970/fdmp.2009.005.081

    Abstract In this paper a theoretical approach is elaborated for modelling the impact and ensuing spreading behaviour of a liquid droplet after its collision with a flat and rigid surface. The major outcomes of such a study can be summarized as follows: 1) The propagating-shock-wave velocity associated with the droplet is not a constant value but depends on the impact velocity and the physical and geometrical properties of the droplet. 2) The initial radial ejection velocity of the lamella is proportional to the shock-wave velocity (ua) and the impact velocity (0) according to the expression (a-u0)1/2. More >

  • Open Access

    ARTICLE

    Development of an Apparatus for Determining Surface Tension in Drops: Post-Flight Analysis of STS-108

    Lassig, J.1, Montes, G., Quiroga, J.

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.1, pp. 61-80, 2009, DOI:10.3970/fdmp.2009.005.061

    Abstract This paper presents a description of the design and ensuing development of an automated liquid droplet generator and related utilization aboard the space shuttle, a) as a fluid positioning system for materials processing (attached droplet method), and b) as a means to measure surface oscillation of droplets under microgravity for determining their surface tension. More >

  • Open Access

    ARTICLE

    Electromagnetic Levitation Part III: Thermophysical Property Measurements in Microgravity

    Sayavur I. Bakhtiyarov1, Dennis A. Siginer2

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.1, pp. 1-22, 2009, DOI:10.3970/fdmp.2009.005.001

    Abstract Strong inhomogeneous magnetic fields are necessary to generate a finite levitation force in ground based electromagnetic levitation techniques. External forces such as magnetic and gravitational forces influence the oscillation spectrum and counteract the surface movement resulting in a frequency shift, and making the use of electromagnetic levitation techniques in microgravity an attractive alternative to measure thermophysical properties of liquid metals. Under microgravity conditions the magnetic field strength around a liquid droplet is significantly lower than that required to position the same specimen against earth gravity. Hence, a low magnetic field strength results in a low More >

Displaying 161-170 on page 17 of 186. Per Page