Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (49)
  • Open Access

    ARTICLE

    Development of a CNT/Bi2S3/PVDF composite waterproof film-based strain sensor for motion monitoring

    A. X. Yanga, L. F. Huangb,*, Y. Y. Liuc

    Chalcogenide Letters, Vol.22, No.7, pp. 649-663, 2025, DOI:10.15251/CL.2025.227.649

    Abstract An innovative flexible electronic device was developed by integrating functionalized carbon nanotubes, bismuth sulfide nanostructures, and a polyvinylidene fluoride matrix to create a highly water‐resistant strain detection platform. The fabricated film exhibited a remarkable static water contact angle of 141°, with only a 3–4° reduction after 48 hours of immersion, confirming its excellent hydrophobic performance. Mechanical testing revealed a tensile strength of 43.2 MPa and maintained over 96% of its original strength following 1000 bending cycles, thereby demonstrating outstanding durability under repetitive deformation. Electrical characterization showed an initial conductivity of 12.3 S/m and a baseline resistance near… More >

  • Open Access

    REVIEW

    Benefits of Artificial Intelligence for Achieving Durable and Sustainable Building Design

    Abdullah Alariyan1, Rawand A. Mohammed Amin2, Ameen Mokhles Youns3, Mahmoud Alhashash4, Favzi Ghreivati5, Ahed Habib6,*, Maan Habib7

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1387-1410, 2025, DOI:10.32604/sdhm.2025.069821 - 17 November 2025

    Abstract Artificial intelligence (AI) is transforming the building and construction sector, enabling enhanced design strategies for achieving durable and sustainable structures. Traditional methods of design and construction often struggle to adequately predict building longevity, optimize material use, and maintain sustainability throughout a building’s lifecycle. AI technologies, including machine learning, deep learning, and digital twins, present advanced capabilities to overcome these limitations by providing precise predictive analytics, real-time monitoring, and proactive maintenance solutions. This study explores the benefits of integrating AI into building design and construction processes, highlighting key advantages such as improved durability, optimized resource efficiency,… More >

  • Open Access

    REVIEW

    Review of the Mechanical Performance Prediction of Concrete Based on Artificial Neural Networks

    Yidong Xu1, Weijie Zhuge1,2, Jialei Wang1, Xiaopeng Yu3,*, Kan Wu4

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1507-1527, 2025, DOI:10.32604/sdhm.2025.069021 - 17 November 2025

    Abstract The performance of concrete can be affected by many factors, including the material composition, environmental conditions, and construction methods, and it is challenging to predict the performance evolution accurately. The rise of artificial intelligence provides a way to meet the above challenges. This article elaborates on research overview of artificial neural network (ANN) and its prediction for concrete strength, deformation, and durability. The focus is on the comparative analysis of the prediction accuracy for different types of neural networks. Numerous studies have shown that the prediction accuracy of ANN can meet the standards of the More >

  • Open Access

    ARTICLE

    Sustainable Emergency Rescue Products: Design and Monitoring Techniques for Preventing and Mitigating Construction Failures in Unforeseen Circumstances

    Xiaobo Jiang, Hongchao Zheng*

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1695-1716, 2025, DOI:10.32604/sdhm.2025.063890 - 17 November 2025

    Abstract Construction failures caused by unforeseen circumstances, such as natural disasters, environmental degradation, and structural weaknesses, present significant challenges in achieving durability, safety, and sustainability. This research addresses these challenges through the development of advanced emergency rescue systems incorporating wood-derived nanomaterials and IoT-enabled Structural Health Monitoring (SHM) technologies. The use of nanocellulose which demonstrates outstanding mechanical capabilities and biodegradability alongside high resilience allowed developers to design modular rescue systems that function effectively even under challenging conditions while providing real-time failure protection. Experimental data from testing showed that the replacement system strengthened load-bearing limits by 20% while… More >

  • Open Access

    ARTICLE

    Seismic Vibration Control of Wind Turbine Towers with Bidirectional Tuned Bellow Liquid Column Damper

    Xiwei Wang1, Wanrun Li1,2,3,*, Wenhai Zhao1, Yining Wang1, Yongfeng Du1,2,3

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1241-1263, 2025, DOI:10.32604/sdhm.2025.063736 - 05 September 2025

    Abstract To address the vibration issues of wind turbine towers, this paper proposes a bidirectional tuned bellow liquid column damper (BTBLCD). The configuration of the proposed BTBLCD is first described in detail, and its energy dissipation mechanism is derived through theoretical analysis. A refined dynamic model of the wind turbine tower equipped with the BTBLCD is then developed. The vibration energy dissipation performance of the BTBLCD in multiple directions is evaluated through two-way fluid-structure coupling numerical simulations. Finally, a 1/10 scaled model of the wind turbine tower is constructed, and the energy dissipation performance of the… More >

  • Open Access

    REVIEW

    A Comprehensive Review on Bridging the Research Gap in AI-Driven Material Simulation for FRP Composites

    Alin Diniță1, Cosmina-Mihaela Rosca2, Maria Tănase1,*, Adrian Stancu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 147-199, 2025, DOI:10.32604/cmes.2025.066276 - 31 July 2025

    Abstract Fiber-reinforced polymer (FRP) composites are renowned for their high mechanical strength, durability, and lightweight properties, making them integral to civil engineering, aerospace, and automotive manufacturing. Traditionally, the simulation and optimization of FRP materials have relied on finite element (FE) methods, which, while effective, often fall short in capturing the intricate behaviors of these composites under diverse conditions. Concrete examples in this regard involve modeling interfacial cracks, delaminations, or environmental effects that involve nonlinear phenomena. These degradation mechanisms exceed the capacity of classical FE models, as they are not detailed to the required level of detail.… More > Graphic Abstract

    A Comprehensive Review on Bridging the Research Gap in AI-Driven Material Simulation for FRP Composites

  • Open Access

    REVIEW

    Advances in Pediatric Heart Valve Replacement: A State-of-the-Art Review

    Baker M. Ayyash1, Yen Chuan Chen2, Ahmad Sallehuddin2, Ziyad M. Hijazi1,*

    Congenital Heart Disease, Vol.20, No.2, pp. 143-179, 2025, DOI:10.32604/chd.2025.064599 - 30 April 2025

    Abstract Pediatric heart valve replacement (PHVR) remains a challenging procedure due to the unique anatomical and physiological characteristics of children, including growth and development, as well as the long-term need for durable valve function. This review provides an overview of both surgical and transcatheter options for aortic, mitral, pulmonary, and tricuspid valve replacements in pediatric patients, highlighting the indications, outcomes, and advancements in technology and technique. Surgical valve replacement traditionally involves the implantation of biological or mechanical prosthetic valves, with biological valves being preferred in children to reduce the need for lifelong anticoagulation therapy. However, the… More >

  • Open Access

    ARTICLE

    The Potential of Wacapou (Vouacapoua americana) Extracts to Develop New Biobased Protective Solutions for Low-Durability Wood Species

    Emma Kieny1,2,3, Kévin Candelier2,3,*, Louis Milhe1, Yannick Estevez4, Cyrielle Sophie4, Romain Lehnebach1, Jérémie Damay2,3, Daniela Florez1, Emeline Houël5, Marie-France Thévenon2,3, Julie Bossu4

    Journal of Renewable Materials, Vol.13, No.1, pp. 79-100, 2025, DOI:10.32604/jrm.2024.056731 - 20 January 2025

    Abstract The valorization of Amazonian wood residues into active chemical compounds could be an eco-friendly, cost-effective and valuable way to develop wood preservative formulations to enhance the decay and termite resistance of low-durable wood species. Wacapou (Vouacapoua americana., Fabaceae) is a well-known Guianese wood species commonly used in local wood construction due to its outstanding natural durability, which results from the presence of a large panel of extractives compounds. In addition, its industrial processing generates large amounts of residues. Wacapou residues were extracted by maceration using four different solvents (water/ethanol, ethyl acetate, hexane and dichloromethane/methanol), separately and… More > Graphic Abstract

    The Potential of Wacapou (<i>Vouacapoua americana</i>) Extracts to Develop New Biobased Protective Solutions for Low-Durability Wood Species

  • Open Access

    ARTICLE

    Dynamic Interaction Analysis of Coupled Axial-Torsional-Lateral Mechanical Vibrations in Rotary Drilling Systems

    Sabrina Meddah1,2,*, Sid Ahmed Tadjer3, Abdelhakim Idir4, Kong Fah Tee5,6,*, Mohamed Zinelabidine Doghmane1, Madjid Kidouche1

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 77-103, 2025, DOI:10.32604/sdhm.2024.053541 - 15 November 2024

    Abstract Maintaining the integrity and longevity of structures is essential in many industries, such as aerospace, nuclear, and petroleum. To achieve the cost-effectiveness of large-scale systems in petroleum drilling, a strong emphasis on structural durability and monitoring is required. This study focuses on the mechanical vibrations that occur in rotary drilling systems, which have a substantial impact on the structural integrity of drilling equipment. The study specifically investigates axial, torsional, and lateral vibrations, which might lead to negative consequences such as bit-bounce, chaotic whirling, and high-frequency stick-slip. These events not only hinder the efficiency of drilling… More >

  • Open Access

    ARTICLE

    Poly-3,4-ethylenedioxythiophene/Polystyrene Sulfonate/Dimethyl Sulfoxide-Based Conductive Fabrics for Wearable Electronics: Elucidating the Electrical Conductivity and Durability Properties through Controlled Doping and Washing Tests

    Muhammad Faiz Aizamddin1,2,*, Nazreen Che Roslan2, Ayu Natasha Ayub2, Awis Sukarni Mohmad Sabere3, Zarif Mohamed Sofian4, Yee Hui Robin Chang5, Mohd Ifwat Mohd Ghazali6,7, Kishor Kumar Sadasivuni8, Mohamad Arif Kasri9, Muhamad Saipul Fakir10, Mohd Muzamir Mahat2,*

    Journal of Polymer Materials, Vol.41, No.4, pp. 239-261, 2024, DOI:10.32604/jpm.2024.057420 - 16 December 2024

    Abstract Poly-3,4-ethylenedioxythiophene: polystyrene sulfonate (PEDOT/PSS) has revolutionized the field of smart textiles as an advanced conductive polymer, offering an unprecedented combination of high electrical conductivity, solution processability, and mechanical conformability. Despite extensive research in PEDOT/PSS-coated fabrics over the past decade, a critical challenge remains in finding the delicate balance between enhanced conductivity and washing durability required for real-world wearable applications. Hence, this study investigates the electrical conductivity and durability properties of PEDOT/PSS-based conductive fabrics for wearable electronics. By carefully controlling the doping concentration of dimethyl sulfoxide (DMSO), an optimal conductivity of 8.44 ± 0.21 × 10−3 S… More >

Displaying 1-10 on page 1 of 49. Per Page