Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (254)
  • Open Access

    ARTICLE

    Steel Surface Defect Recognition in Smart Manufacturing Using Deep Ensemble Transfer Learning-Based Techniques

    Tajmal Hussain, Jongwon Seok*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 231-250, 2025, DOI:10.32604/cmes.2024.056621 - 17 December 2024

    Abstract Smart manufacturing and Industry 4.0 are transforming traditional manufacturing processes by utilizing innovative technologies such as the artificial intelligence (AI) and internet of things (IoT) to enhance efficiency, reduce costs, and ensure product quality. In light of the recent advancement of Industry 4.0, identifying defects has become important for ensuring the quality of products during the manufacturing process. In this research, we present an ensemble methodology for accurately classifying hot rolled steel surface defects by combining the strengths of four pre-trained convolutional neural network (CNN) architectures: VGG16, VGG19, Xception, and Mobile-Net V2, compensating for their… More >

  • Open Access

    ARTICLE

    Landslide Susceptibility Mapping Using RBFN-Based Ensemble Machine Learning Models

    Duc-Dam Nguyen1, Nguyen Viet Tiep2,*, Quynh-Anh Thi Bui1, Hiep Van Le1, Indra Prakash3, Romulus Costache4,5,6,7, Manish Pandey8,9, Binh Thai Pham1

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 467-500, 2025, DOI:10.32604/cmes.2024.056576 - 17 December 2024

    Abstract This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand, India, using advanced ensemble models that combined Radial Basis Function Networks (RBFN) with three ensemble learning techniques: DAGGING (DG), MULTIBOOST (MB), and ADABOOST (AB). This combination resulted in three distinct ensemble models: DG-RBFN, MB-RBFN, and AB-RBFN. Additionally, a traditional weighted method, Information Value (IV), and a benchmark machine learning (ML) model, Multilayer Perceptron Neural Network (MLP), were employed for comparison and validation. The models were developed using ten landslide conditioning factors, which included slope, aspect, elevation, curvature, land cover, geomorphology,… More >

  • Open Access

    ARTICLE

    A Scalable and Generalized Deep Ensemble Model for Road Anomaly Detection in Surveillance Videos

    Sarfaraz Natha1,2,*, Fareed A. Jokhio1, Mehwish Laghari1, Mohammad Siraj3,*, Saif A. Alsaif3, Usman Ashraf4, Asghar Ali5

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3707-3729, 2024, DOI:10.32604/cmc.2024.057684 - 19 December 2024

    Abstract Surveillance cameras have been widely used for monitoring in both private and public sectors as a security measure. Close Circuits Television (CCTV) Cameras are used to surveillance and monitor the normal and anomalous incidents. Real-world anomaly detection is a significant challenge due to its complex and diverse nature. It is difficult to manually analyze because vast amounts of video data have been generated through surveillance systems, and the need for automated techniques has been raised to enhance detection accuracy. This paper proposes a novel deep-stacked ensemble model integrated with a data augmentation approach called Stack… More >

  • Open Access

    ARTICLE

    A Hybrid WSVM-Levy Approach for Energy-Efficient Manufacturing Using Big Data and IoT

    Surbhi Bhatia Khan1,2,*, Mohammad Alojail3, Mahesh Thyluru Ramakrishna4, Hemant Sharma5

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4895-4914, 2024, DOI:10.32604/cmc.2024.057585 - 19 December 2024

    Abstract In Intelligent Manufacturing, Big Data and industrial information enable enterprises to closely monitor and respond to precise changes in both internal processes and external environmental factors, ensuring more informed decision-making and adaptive system management. It also promotes decision making and provides scientific analysis to enhance the efficiency of the operation, cost reduction, maximizing the process of production and so on. Various methods are employed to enhance productivity, yet achieving sustainable manufacturing remains a complex challenge that requires careful consideration. This study aims to develop a methodology for effective manufacturing sustainability by proposing a novel Hybrid… More >

  • Open Access

    ARTICLE

    Modeling and Predictive Analytics of Breast Cancer Using Ensemble Learning Techniques: An Explainable Artificial Intelligence Approach

    Avi Deb Raha1, Fatema Jannat Dihan2, Mrityunjoy Gain1, Saydul Akbar Murad3, Apurba Adhikary2, Md. Bipul Hossain2, Md. Mehedi Hassan1, Taher Al-Shehari4, Nasser A. Alsadhan5, Mohammed Kadrie4, Anupam Kumar Bairagi1,*

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4033-4048, 2024, DOI:10.32604/cmc.2024.057415 - 19 December 2024

    Abstract Breast cancer stands as one of the world’s most perilous and formidable diseases, having recently surpassed lung cancer as the most prevalent cancer type. This disease arises when cells in the breast undergo unregulated proliferation, resulting in the formation of a tumor that has the capacity to invade surrounding tissues. It is not confined to a specific gender; both men and women can be diagnosed with breast cancer, although it is more frequently observed in women. Early detection is pivotal in mitigating its mortality rate. The key to curbing its mortality lies in early detection.… More >

  • Open Access

    ARTICLE

    Fake News Detection on Social Media Using Ensemble Methods

    Muhammad Ali Ilyas1, Abdul Rehman2, Assad Abbas1, Dongsun Kim3,*, Muhammad Tahir Naseem4,*, Nasro Min Allah5

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4525-4549, 2024, DOI:10.32604/cmc.2024.056291 - 19 December 2024

    Abstract In an era dominated by information dissemination through various channels like newspapers, social media, radio, and television, the surge in content production, especially on social platforms, has amplified the challenge of distinguishing between truthful and deceptive information. Fake news, a prevalent issue, particularly on social media, complicates the assessment of news credibility. The pervasive spread of fake news not only misleads the public but also erodes trust in legitimate news sources, creating confusion and polarizing opinions. As the volume of information grows, individuals increasingly struggle to discern credible content from false narratives, leading to widespread… More >

  • Open Access

    REVIEW

    Software Reliability Prediction Using Ensemble Learning on Selected Features in Imbalanced and Balanced Datasets: A Review

    Suneel Kumar Rath1, Madhusmita Sahu1, Shom Prasad Das2, Junali Jasmine Jena3, Chitralekha Jena4, Baseem Khan5,6,7,*, Ahmed Ali7, Pitshou Bokoro7

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1513-1536, 2024, DOI:10.32604/csse.2024.057067 - 22 November 2024

    Abstract Redundancy, correlation, feature irrelevance, and missing samples are just a few problems that make it difficult to analyze software defect data. Additionally, it might be challenging to maintain an even distribution of data relating to both defective and non-defective software. The latter software class’s data are predominately present in the dataset in the majority of experimental situations. The objective of this review study is to demonstrate the effectiveness of combining ensemble learning and feature selection in improving the performance of defect classification. Besides the successful feature selection approach, a novel variant of the ensemble learning… More >

  • Open Access

    ARTICLE

    Improving Badminton Action Recognition Using Spatio-Temporal Analysis and a Weighted Ensemble Learning Model

    Farida Asriani1,2, Azhari Azhari1,*, Wahyono Wahyono1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3079-3096, 2024, DOI:10.32604/cmc.2024.058193 - 18 November 2024

    Abstract Incredible progress has been made in human action recognition (HAR), significantly impacting computer vision applications in sports analytics. However, identifying dynamic and complex movements in sports like badminton remains challenging due to the need for precise recognition accuracy and better management of complex motion patterns. Deep learning techniques like convolutional neural networks (CNNs), long short-term memory (LSTM), and graph convolutional networks (GCNs) improve recognition in large datasets, while the traditional machine learning methods like SVM (support vector machines), RF (random forest), and LR (logistic regression), combined with handcrafted features and ensemble approaches, perform well but… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Approach for Green Energy Forecasting in Asian Countries

    Tao Yan1, Javed Rashid2,3, Muhammad Shoaib Saleem3,4, Sajjad Ahmad4, Muhammad Faheem5,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2685-2708, 2024, DOI:10.32604/cmc.2024.058186 - 18 November 2024

    Abstract Electricity is essential for keeping power networks balanced between supply and demand, especially since it costs a lot to store. The article talks about different deep learning methods that are used to guess how much green energy different Asian countries will produce. The main goal is to make reliable and accurate predictions that can help with the planning of new power plants to meet rising demand. There is a new deep learning model called the Green-electrical Production Ensemble (GP-Ensemble). It combines three types of neural networks: convolutional neural networks (CNNs), gated recurrent units (GRUs), and… More >

  • Open Access

    ARTICLE

    Enhanced DDoS Detection Using Advanced Machine Learning and Ensemble Techniques in Software Defined Networking

    Hira Akhtar Butt1, Khoula Said Al Harthy2, Mumtaz Ali Shah3, Mudassar Hussain2,*, Rashid Amin4,*, Mujeeb Ur Rehman1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3003-3031, 2024, DOI:10.32604/cmc.2024.057185 - 18 November 2024

    Abstract Detecting sophisticated cyberattacks, mainly Distributed Denial of Service (DDoS) attacks, with unexpected patterns remains challenging in modern networks. Traditional detection systems often struggle to mitigate such attacks in conventional and software-defined networking (SDN) environments. While Machine Learning (ML) models can distinguish between benign and malicious traffic, their limited feature scope hinders the detection of new zero-day or low-rate DDoS attacks requiring frequent retraining. In this paper, we propose a novel DDoS detection framework that combines Machine Learning (ML) and Ensemble Learning (EL) techniques to improve DDoS attack detection and mitigation in SDN environments. Our model… More >

Displaying 1-10 on page 1 of 254. Per Page