Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (229)
  • Open Access

    ARTICLE

    Computational Linguistics Based Arabic Poem Classification and Dictarization Model

    Manar Ahmed Hamza1,*, Hala J. Alshahrani2, Najm Alotaibi3, Mohamed K. Nour4, Mahmoud Othman5, Gouse Pasha Mohammed1, Mohammed Rizwanullah1, Mohamed I. Eldesouki6

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 97-114, 2024, DOI:10.32604/csse.2023.034520

    Abstract Computational linguistics is the scientific and engineering discipline related to comprehending written and spoken language from a computational perspective and building artefacts that effectively process and produce language, either in bulk or in a dialogue setting. This paper develops a Chaotic Bird Swarm Optimization with deep ensemble learning based Arabic poem classification and dictarization (CBSOEDL-APCD) technique. The presented CBSOEDL-APCD technique involves the classification and dictarization of Arabic text into Arabic poetries and prose. Primarily, the CBSOEDL-APCD technique carries out data pre-processing to convert it into a useful format. Besides, the ensemble deep learning (EDL) model More >

  • Open Access

    ARTICLE

    User Purchase Intention Prediction Based on Improved Deep Forest

    Yifan Zhang1, Qiancheng Yu1,2,*, Lisi Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 661-677, 2024, DOI:10.32604/cmes.2023.044255

    Abstract Widely used deep neural networks currently face limitations in achieving optimal performance for purchase intention prediction due to constraints on data volume and hyperparameter selection. To address this issue, based on the deep forest algorithm and further integrating evolutionary ensemble learning methods, this paper proposes a novel Deep Adaptive Evolutionary Ensemble (DAEE) model. This model introduces model diversity into the cascade layer, allowing it to adaptively adjust its structure to accommodate complex and evolving purchasing behavior patterns. Moreover, this paper optimizes the methods of obtaining feature vectors, enhancement vectors, and prediction results within the deep More >

  • Open Access

    ARTICLE

    Nuclei Segmentation in Histopathology Images Using Structure-Preserving Color Normalization Based Ensemble Deep Learning Frameworks

    Manas Ranjan Prusty1, Rishi Dinesh2, Hariket Sukesh Kumar Sheth2, Alapati Lakshmi Viswanath2, Sandeep Kumar Satapathy2,3,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3077-3094, 2023, DOI:10.32604/cmc.2023.042718

    Abstract This paper presents a novel computerized technique for the segmentation of nuclei in hematoxylin and eosin (H&E) stained histopathology images. The purpose of this study is to overcome the challenges faced in automated nuclei segmentation due to the diversity of nuclei structures that arise from differences in tissue types and staining protocols, as well as the segmentation of variable-sized and overlapping nuclei. To this extent, the approach proposed in this study uses an ensemble of the UNet architecture with various Convolutional Neural Networks (CNN) architectures as encoder backbones, along with stain normalization and test time… More >

  • Open Access

    ARTICLE

    DNEF: A New Ensemble Framework Based on Deep Network Structure

    Siyu Yang1, Ge Song1,*, Yuqiao Deng2, Changyu Liu1, Zhuoyu Ou1

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 4055-4072, 2023, DOI:10.32604/cmc.2023.042277

    Abstract Deep neural networks have achieved tremendous success in various fields, and the structure of these networks is a key factor in their success. In this paper, we focus on the research of ensemble learning based on deep network structure and propose a new deep network ensemble framework (DNEF). Unlike other ensemble learning models, DNEF is an ensemble learning architecture of network structures, with serial iteration between the hidden layers, while base classifiers are trained in parallel within these hidden layers. Specifically, DNEF uses randomly sampled data as input and implements serial iteration based on the… More >

  • Open Access

    ARTICLE

    Ligand Based Virtual Screening of Molecular Compounds in Drug Discovery Using GCAN Fingerprint and Ensemble Machine Learning Algorithm

    R. Ani1,*, O. S. Deepa2, B. R. Manju1

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 3033-3048, 2023, DOI:10.32604/csse.2023.033807

    Abstract The drug development process takes a long time since it requires sorting through a large number of inactive compounds from a large collection of compounds chosen for study and choosing just the most pertinent compounds that can bind to a disease protein. The use of virtual screening in pharmaceutical research is growing in popularity. During the early phases of medication research and development, it is crucial. Chemical compound searches are now more narrowly targeted. Because the databases contain more and more ligands, this method needs to be quick and exact. Neural network fingerprints were created… More >

  • Open Access

    ARTICLE

    Modified MMS: Minimization Approach for Model Subset Selection

    C. Rajathi, P. Rukmani*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 733-756, 2023, DOI:10.32604/cmc.2023.041507

    Abstract Considering the recent developments in the digital environment, ensuring a higher level of security for networking systems is imperative. Many security approaches are being constantly developed to protect against evolving threats. An ensemble model for the intrusion classification system yielded promising results based on the knowledge of many prior studies. This research work aimed to create a more diverse and effective ensemble model. To this end, selected six classification models, Logistic Regression (LR), Naive Bayes (NB), K-Nearest Neighbor (KNN), Decision Tree (DT), Support Vector Machine (SVM), and Random Forest (RF) from existing study to run… More >

  • Open Access

    ARTICLE

    An Efficient Stacked Ensemble Model for Heart Disease Detection and Classification

    Sidra Abbas1, Gabriel Avelino Sampedro2,3, Shtwai Alsubai4, Ahmad Almadhor5, Tai-hoon Kim6,*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 665-680, 2023, DOI:10.32604/cmc.2023.041031

    Abstract Cardiac disease is a chronic condition that impairs the heart’s functionality. It includes conditions such as coronary artery disease, heart failure, arrhythmias, and valvular heart disease. These conditions can lead to serious complications and even be life-threatening if not detected and managed in time. Researchers have utilized Machine Learning (ML) and Deep Learning (DL) to identify heart abnormalities swiftly and consistently. Various approaches have been applied to predict and treat heart disease utilizing ML and DL. This paper proposes a Machine and Deep Learning-based Stacked Model (MDLSM) to predict heart disease accurately. ML approaches such… More >

  • Open Access

    ARTICLE

    Credit Card Fraud Detection on Original European Credit Card Holder Dataset Using Ensemble Machine Learning Technique

    Yih Bing Chu*, Zhi Min Lim, Bryan Keane, Ping Hao Kong, Ahmed Rafat Elkilany, Osama Hisham Abusetta

    Journal of Cyber Security, Vol.5, pp. 33-46, 2023, DOI:10.32604/jcs.2023.045422

    Abstract The proliferation of digital payment methods facilitated by various online platforms and applications has led to a surge in financial fraud, particularly in credit card transactions. Advanced technologies such as machine learning have been widely employed to enhance the early detection and prevention of losses arising from potentially fraudulent activities. However, a prevalent approach in existing literature involves the use of extensive data sampling and feature selection algorithms as a precursor to subsequent investigations. While sampling techniques can significantly reduce computational time, the resulting dataset relies on generated data and the accuracy of the pre-processing… More >

  • Open Access

    ARTICLE

    K-Hyperparameter Tuning in High-Dimensional Space Clustering: Solving Smooth Elbow Challenges Using an Ensemble Based Technique of a Self-Adapting Autoencoder and Internal Validation Indexes

    Rufus Gikera1,*, Jonathan Mwaura2, Elizaphan Muuro3, Shadrack Mambo3

    Journal on Artificial Intelligence, Vol.5, pp. 75-112, 2023, DOI:10.32604/jai.2023.043229

    Abstract k-means is a popular clustering algorithm because of its simplicity and scalability to handle large datasets. However, one of its setbacks is the challenge of identifying the correct k-hyperparameter value. Tuning this value correctly is critical for building effective k-means models. The use of the traditional elbow method to help identify this value has a long-standing literature. However, when using this method with certain datasets, smooth curves may appear, making it challenging to identify the k-value due to its unclear nature. On the other hand, various internal validation indexes, which are proposed as a solution to this… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Approach to Classify the Plant Leaf Species

    Javed Rashid1,2, Imran Khan1, Irshad Ahmed Abbasi3, Muhammad Rizwan Saeed4, Mubbashar Saddique5,*, Mohamed Abbas6,7

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3897-3920, 2023, DOI:10.32604/cmc.2023.040356

    Abstract Many plant species have a startling degree of morphological similarity, making it difficult to split and categorize them reliably. Unknown plant species can be challenging to classify and segment using deep learning. While using deep learning architectures has helped improve classification accuracy, the resulting models often need to be more flexible and require a large dataset to train. For the sake of taxonomy, this research proposes a hybrid method for categorizing guava, potato, and java plum leaves. Two new approaches are used to form the hybrid model suggested here. The guava, potato, and java plum More >

Displaying 21-30 on page 3 of 229. Per Page