Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25)
  • Open Access

    ARTICLE

    Bio-Based Hyperbranched Toughener From Tannic Acid and Its Enhanced Solvent-Free Epoxy Resin with High Performance

    Jie Xu1,3, Jiayao Yang1, Peng Lin2, Xiaohuan Liu1,*, Jinjie Zhang1, Shenyuan Fu1,*, Yuxun Tang2,*

    Journal of Renewable Materials, Vol.7, No.12, pp. 1333-1346, 2019, DOI:10.32604/jrm.2019.07905

    Abstract It is essential to design economic and efficient tougheners to prepare high-performance epoxy resin; however, this has remained a huge challenge. Herein, an eco-friendly, low-cost, and facile-fabricated bio-based hyperbranched toughener, carboxylic acid-functionalized tannic acid (CATA), was successfully prepared and applicated to the preparation of solvent-free epoxy resins. The mechanical performance, morphology, structural characterization, and thermal characterization of toughened epoxy resin system were studied. The toughened epoxy resin system with only 1.0wt% CATA reached the highest impact strength, 111% higher than the neat epoxy resin system. Notably, the tensile strength and elongation at break of toughened epoxy resin systems increased moderately… More >

  • Open Access

    REVIEW

    Recent Development of Cardanol Based Polymer Materials-A Review

    Puyou Jia1, Fei Song1, Qiaoguang Li2,*, Haoyu Xia3, Mei Li1,*, Xugang Shu2, Yonghong Zhou1

    Journal of Renewable Materials, Vol.7, No.7, pp. 601-619, 2019, DOI:10.32604/jrm.2019.07011

    Abstract Polymers from renewable resources are receiving tremendous attention due to the increasing concerns on the depletion of fossil oils and deteriorated environments. Cardanol, as an abundant and renewable chemical raw material, has been widely used for the production of renewable polymer materials via converting into various of chemical monomers with active functional groups. This comprehensive review deals with various aspects of cardanol as a starting material the preparing various polymer and polymer composites such as benzoxazine resins, phenolic resin, polyurethanes, epoxy resin, vinyl ester polymers, polyamide and cyanate ester resins. The assessment of the future prospects for the use of… More >

  • Open Access

    ARTICLE

    Effect of Epoxidized Jatropha Oil on the Cure, Thermal, Morphological and Viscoelastic Properties of Epoxy Resins

    A. Sammaiah1, K. V. Padmaja1, K. I. Suresh*,2, R. B. N. Prasad1

    Journal of Renewable Materials, Vol.4, No.2, pp. 113-122, 2016, DOI:10.7569/JRM.2015.634118

    Abstract This article reports the effect of epoxidized jatropha oil (EJO) on the thermal, cure and viscoelastic properties of epoxy resins. Epoxidized jatropha oil with an oxirane value of 5.0 was prepared and epoxy formulations containing different concentrations of EJO were evaluated for cure, morphology, thermal and viscoelastic properties. The curing temperature of the formulations increased with increasing EJO content. The glass transition temperature of the cured films decreased from 56 °C for unmodified epoxy resin to 23 °C for the sample with 60 wt% EJO reactive diluent, suggesting good plasticizing action. The thermal decomposition was only marginally affected. More >

  • Open Access

    ARTICLE

    Modeling of Moisture Diffusion in Permeable Particle-Reinforced Epoxy Resins Using Three-Dimensional Heterogeneous Hybrid Moisture Element Method

    D.S. Liu1,2, Z.H. Fong1, I.H. Lin1, Z.W. Zhuang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.93, No.6, pp. 441-468, 2013, DOI:10.3970/cmes.2013.093.441

    Abstract In this study, we proposed a novel numerical technique to simulate the transient moisture diffusion process and to apply it to heterogeneous composite resins. The method is based on a heterogeneous hybrid moisture element (HHME), with properties determined through an equivalent hybrid moisture capacitance/ conductance matrix that was calculated using the conventional finite element formulation in space discretization and the q-method in time discretization, with similar mass/stiffness properties and matrix condensing operations. A coupled HHME with finite element scheme was developed and implemented in the computer code by using the commercial software MATLAB to analyze the transient moisture diffusion process… More >

  • Open Access

    ARTICLE

    Modeling of Moisture Diffusion in Heterogeneous Epoxy Resin Containing Multiple Randomly Distributed Particles Using Hybrid Moisture Element Method

    De-Shin Liu1, Zhen-Wei Zhuang1,2, Cho-LiangChung3, Ching-Yang Chen4

    CMC-Computers, Materials & Continua, Vol.13, No.2, pp. 89-114, 2009, DOI:10.3970/cmc.2009.013.089

    Abstract This paper employs a novel numerical technique, designated as the hybrid moisture element method (HMEM), to model and analyze moisture diffusion in a heterogeneous epoxy resin containing multiple randomly distributed particles. The HMEM scheme is based on a hybrid moisture element (HME), whose properties are determined by equivalent moisture capacitance and conductance matrixes calculated using the conventional finite element formulation. A coupled HME-FE scheme is developed and implemented using the commercial FEM software ABAQUS. The HME-FE scheme is then employed to analyze the moisture diffusion characteristics of a heterogeneous epoxy resin layer containing particle inclusions. The analysis commences by comparing… More >

Displaying 21-30 on page 3 of 25. Per Page