Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (53)
  • Open Access

    ARTICLE

    Optimizing Resource Allocation in Blockchain Networks Using Neural Genetic Algorithm

    Malvinder Singh Bali1, Weiwei Jiang2,*, Saurav Verma3, Kanwalpreet Kour4, Ashwini Rao3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.070866 - 09 December 2025

    Abstract In recent years, Blockchain Technology has become a paradigm shift, providing Transparent, Secure, and Decentralized platforms for diverse applications, ranging from Cryptocurrency to supply chain management. Nevertheless, the optimization of blockchain networks remains a critical challenge due to persistent issues such as latency, scalability, and energy consumption. This study proposes an innovative approach to Blockchain network optimization, drawing inspiration from principles of biological evolution and natural selection through evolutionary algorithms. Specifically, we explore the application of genetic algorithms, particle swarm optimization, and related evolutionary techniques to enhance the performance of blockchain networks. The proposed methodologies More >

  • Open Access

    ARTICLE

    An Improved Variant of Multi-Population Cooperative Constrained Multi-Objective Optimization (MCCMO) for Multi-Objective Optimization Problem

    Muhammad Waqar Khan1,*, Adnan Ahmed Siddiqui1, Syed Sajjad Hussain Rizvi2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-15, 2026, DOI:10.32604/cmc.2025.070858 - 09 December 2025

    Abstract The multi-objective optimization problems, especially in constrained environments such as power distribution planning, demand robust strategies for discovering effective solutions. This work presents the improved variant of the Multi-population Cooperative Constrained Multi-Objective Optimization (MCCMO) Algorithm, termed Adaptive Diversity Preservation (ADP). This enhancement is primarily focused on the improvement of constraint handling strategies, local search integration, hybrid selection approaches, and adaptive parameter control. The improved variant was experimented on with the RWMOP50 power distribution system planning benchmark. As per the findings, the improved variant outperformed the original MCCMO across the eleven performance metrics, particularly in terms… More >

  • Open Access

    ARTICLE

    Multi-Objective Evolutionary Framework for High-Precision Community Detection in Complex Networks

    Asal Jameel Khudhair#, Amenah Dahim Abbood#,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-31, 2026, DOI:10.32604/cmc.2025.068553 - 10 November 2025

    Abstract Community detection is one of the most fundamental applications in understanding the structure of complicated networks. Furthermore, it is an important approach to identifying closely linked clusters of nodes that may represent underlying patterns and relationships. Networking structures are highly sensitive in social networks, requiring advanced techniques to accurately identify the structure of these communities. Most conventional algorithms for detecting communities perform inadequately with complicated networks. In addition, they miss out on accurately identifying clusters. Since single-objective optimization cannot always generate accurate and comprehensive results, as multi-objective optimization can. Therefore, we utilized two objective functions… More >

  • Open Access

    ARTICLE

    A Bi-Level Optimization Model and Hybrid Evolutionary Algorithm for Wind Farm Layout with Different Turbine Types

    Erping Song1,*, Zipin Yao2

    Energy Engineering, Vol.122, No.12, pp. 5129-5147, 2025, DOI:10.32604/ee.2025.063827 - 27 November 2025

    Abstract Wind farm layout optimization is a critical challenge in renewable energy development, especially in regions with complex terrain. Micro-siting of wind turbines has a significant impact on the overall efficiency and economic viability of wind farm, where the wake effect, wind speed, types of wind turbines, etc., have an impact on the output power of the wind farm. To solve the optimization problem of wind farm layout under complex terrain conditions, this paper proposes wind turbine layout optimization using different types of wind turbines, the aim is to reduce the influence of the wake effect… More >

  • Open Access

    REVIEW

    A Review of the Evolution of Multi-Objective Evolutionary Algorithms

    Thomas Hanne1,*, Mohammad Jahani Moghaddam2

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4203-4236, 2025, DOI:10.32604/cmc.2025.068087 - 23 October 2025

    Abstract Multi-Objective Evolutionary Algorithms (MOEAs) have significantly advanced the domain of Multi-Objective Optimization (MOO), facilitating solutions for complex problems with multiple conflicting objectives. This review explores the historical development of MOEAs, beginning with foundational concepts in multi-objective optimization, basic types of MOEAs, and the evolution of Pareto-based selection and niching methods. Further advancements, including decom-position-based approaches and hybrid algorithms, are discussed. Applications are analyzed in established domains such as engineering and economics, as well as in emerging fields like advanced analytics and machine learning. The significance of MOEAs in addressing real-world problems is emphasized, highlighting their More >

  • Open Access

    REVIEW

    Feature Selection Optimisation for Cancer Classification Based on Evolutionary Algorithms: An Extensive Review

    Siti Ramadhani1,2, Lestari Handayani2, Theam Foo Ng3, Sumayyah Dzulkifly1, Roziana Ariffin4,5, Haldi Budiman6, Shir Li Wang1,7,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 2711-2765, 2025, DOI:10.32604/cmes.2025.062709 - 30 June 2025

    Abstract In recent years, feature selection (FS) optimization of high-dimensional gene expression data has become one of the most promising approaches for cancer prediction and classification. This work reviews FS and classification methods that utilize evolutionary algorithms (EAs) for gene expression profiles in cancer or medical applications based on research motivations, challenges, and recommendations. Relevant studies were retrieved from four major academic databases–IEEE, Scopus, Springer, and ScienceDirect–using the keywords ‘cancer classification’, ‘optimization’, ‘FS’, and ‘gene expression profile’. A total of 67 papers were finally selected with key advancements identified as follows: (1) The majority of papers… More > Graphic Abstract

    Feature Selection Optimisation for Cancer Classification Based on Evolutionary Algorithms: An Extensive Review

  • Open Access

    ARTICLE

    Multi-Firmware Comparison Based on Evolutionary Algorithm and Trusted Base Point

    Wenbing Wang*, Yongwen Liu

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 763-790, 2025, DOI:10.32604/cmc.2025.065179 - 09 June 2025

    Abstract Multi-firmware comparison techniques can improve efficiency when auditing firmwares in bulk. However, the problem of matching functions between multiple firmwares has not been studied before. This paper proposes a multi-firmware comparison method based on evolutionary algorithms and trusted base points. We first model the multi-firmware comparison as a multi-sequence matching problem. Then, we propose an adaptation function and a population generation method based on trusted base points. Finally, we apply an evolutionary algorithm to find the optimal result. At the same time, we design the similarity of matching results as an evaluation metric to measure More >

  • Open Access

    ARTICLE

    A Q-Learning-Assisted Co-Evolutionary Algorithm for Distributed Assembly Flexible Job Shop Scheduling Problems

    Song Gao, Shixin Liu*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5623-5641, 2025, DOI:10.32604/cmc.2025.058334 - 19 May 2025

    Abstract With the development of economic globalization, distributed manufacturing is becoming more and more prevalent. Recently, integrated scheduling of distributed production and assembly has captured much concern. This research studies a distributed flexible job shop scheduling problem with assembly operations. Firstly, a mixed integer programming model is formulated to minimize the maximum completion time. Secondly, a Q-learning-assisted co-evolutionary algorithm is presented to solve the model: (1) Multiple populations are developed to seek required decisions simultaneously; (2) An encoding and decoding method based on problem features is applied to represent individuals; (3) A hybrid approach of heuristic… More >

  • Open Access

    ARTICLE

    Particle Swarm Optimization Algorithm for Feature Selection Inspired by Peak Ecosystem Dynamics

    Shaobo Deng*, Meiru Xie, Bo Wang, Shuaikun Zhang, Sujie Guan, Min Li

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2723-2751, 2025, DOI:10.32604/cmc.2024.057874 - 17 February 2025

    Abstract In recent years, particle swarm optimization (PSO) has received widespread attention in feature selection due to its simplicity and potential for global search. However, in traditional PSO, particles primarily update based on two extreme values: personal best and global best, which limits the diversity of information. Ideally, particles should learn from multiple advantageous particles to enhance interactivity and optimization efficiency. Accordingly, this paper proposes a PSO that simulates the evolutionary dynamics of species survival in mountain peak ecology (PEPSO) for feature selection. Based on the pyramid topology, the algorithm simulates the features of mountain peak… More >

  • Open Access

    ARTICLE

    DeepSurNet-NSGA II: Deep Surrogate Model-Assisted Multi-Objective Evolutionary Algorithm for Enhancing Leg Linkage in Walking Robots

    Sayat Ibrayev1, Batyrkhan Omarov1,2,3,*, Arman Ibrayeva1, Zeinel Momynkulov1,2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 229-249, 2024, DOI:10.32604/cmc.2024.053075 - 15 October 2024

    Abstract This research paper presents a comprehensive investigation into the effectiveness of the DeepSurNet-NSGA II (Deep Surrogate Model-Assisted Non-dominated Sorting Genetic Algorithm II) for solving complex multi-objective optimization problems, with a particular focus on robotic leg-linkage design. The study introduces an innovative approach that integrates deep learning-based surrogate models with the robust Non-dominated Sorting Genetic Algorithm II, aiming to enhance the efficiency and precision of the optimization process. Through a series of empirical experiments and algorithmic analyses, the paper demonstrates a high degree of correlation between solutions generated by the DeepSurNet-NSGA II and those obtained from… More >

Displaying 1-10 on page 1 of 53. Per Page