Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (82)
  • Open Access

    ARTICLE

    A New Quantitative Entropic Method for Exploring the Urban Sprawl Mechanism: Taking Beijing as an Example

    Zhensen Wei1, Penghui Jiang1,*, Zhen Chen2

    Revue Internationale de Géomatique, Vol.34, pp. 461-485, 2025, DOI:10.32604/rig.2025.065814 - 29 July 2025

    Abstract Urban sprawl affects the sustainable development of the world’s economy and society. Confirming urban sprawl trends and proposing countermeasures have received significant attention. Cities are self-organizing systems with dissipative attributes, and city development is accompanied by urban entropy changes. Urban entropy change reveals the essence of urban sprawl; thus, it can be used to measure urban sprawl and better understand its phenomena. However, the literature on entropy change in urban sprawl research is limited to qualitative descriptions, and no convenient or effective quantitative metrics exist. This study bridges entropy changes and urban form metrics, analyzing… More >

  • Open Access

    ARTICLE

    Shape Sensitivity Analysis of Acoustic Scattering with Series Expansion Boundary Element Methods

    Fan Li1, Hongxue Liu2, Yongsong Li2, Leilei Chen2, Haojie Lian1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 2785-2809, 2025, DOI:10.32604/cmes.2025.066001 - 30 June 2025

    Abstract This study explores a sensitivity analysis method based on the boundary element method (BEM) to address the computational complexity in acoustic analysis with ground reflection problems. The advantages of BEM in acoustic simulations and its high computational cost in broadband problems are examined. To improve efficiency, a Taylor series expansion is applied to decouple frequency-dependent terms in BEM. Additionally, the Second-Order Arnoldi (SOAR) model order reduction method is integrated to reduce computational costs and enhance numerical stability. Furthermore, an isogeometric sensitivity boundary integral equation is formulated using the direct differentiation method, incorporating Cauchy principal value More >

  • Open Access

    ARTICLE

    Hybrid Framework for Structural Analysis: Integrating Topology Optimization, Adjacent Element Temperature-Driven Pre-Stress, and Greedy Algorithms

    Ibrahim T. Teke1,2, Ahmet H. Ertas2,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 243-264, 2025, DOI:10.32604/cmc.2025.066086 - 09 June 2025

    Abstract This study presents a novel hybrid topology optimization and mold design framework that integrates process fitting, runner system optimization, and structural analysis to significantly enhance the performance of injection-molded parts. At its core, the framework employs a greedy algorithm that generates runner systems based on adjacency and shortest path principles, leading to improvements in both mechanical strength and material efficiency. The design optimization is validated through a series of rigorous experimental tests, including three-point bending and torsion tests performed on key-socket frames, ensuring that the optimized designs meet practical performance requirements. A critical innovation of… More >

  • Open Access

    ARTICLE

    Short-Term Prediction of Photovoltaic Power Based on Improved CNN-LSTM and Cascading Learning

    Feng Guo, Chen Yang*, Dezhong Xia, Jingxiang Xu

    Energy Engineering, Vol.122, No.5, pp. 1975-1999, 2025, DOI:10.32604/ee.2025.062035 - 25 April 2025

    Abstract Short-term photovoltaic (PV) power forecasting plays a crucial role in enhancing the stability and reliability of power grid scheduling. To address the challenges posed by complex environmental variables and difficulties in modeling temporal features in PV power prediction, a short-term PV power forecasting method based on an improved CNN-LSTM and cascade learning strategy is proposed. First, Pearson correlation coefficients and mutual information are used to select representative features, reducing the impact of redundant features on model performance. Then, the CNN-LSTM network is designed to extract local features using CNN and learn temporal dependencies through LSTM,… More > Graphic Abstract

    Short-Term Prediction of Photovoltaic Power Based on Improved CNN-LSTM and Cascading Learning

  • Open Access

    ARTICLE

    New Rigid Furan Biofoams Based on Hydrolysable Chesnut (Castanea sativa) Tannin by Chemical Expansion

    João Vitor Dorini Falavinha1, Pedro Henrique Gonzales De Cademartori2, Philippe Gérardin1, Antonio Pizzi1, Christine Gérardin-Charbonnier1,*

    Journal of Renewable Materials, Vol.13, No.4, pp. 687-697, 2025, DOI:10.32604/jrm.2025.058902 - 21 April 2025

    Abstract Tannins are polyphenols widely present in the plant kingdom, commonly divided into two groups: condensed and hydrolysable tannins. Sustainable furanic bio-foams based on condensed tannins have been largely studied, but little is described about the use of hydrolysable tannins for this material. This study examined the potential of hydrolysable chestnut tannin in comparison to condensed mimosa tannins to produce furanic foams by chemical expansion. Due to the low reactivity of the hydrolysable tannin, the use of an external source for its polymerization and curing was necessary. Through Fourier transform infrared spectroscopy (FTIR) chromatography, it was More > Graphic Abstract

    New Rigid Furan Biofoams Based on Hydrolysable Chesnut (<i>Castanea sativa</i>) Tannin by Chemical Expansion

  • Open Access

    ARTICLE

    A Study on Polyp Dataset Expansion Algorithm Based on Improved Pix2Pix

    Ziji Xiao1, Kaibo Yang1, Mingen Zhong1,*, Kang Fan2, Jiawei Tan2, Zhiying Deng1

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2665-2686, 2025, DOI:10.32604/cmc.2024.058345 - 17 February 2025

    Abstract The polyp dataset involves the confidentiality of medical records, so it might be difficult to obtain datasets with accurate annotations. This problem can be effectively solved by expanding the polyp data set with algorithms. The traditional polyp dataset expansion scheme usually requires the use of two models or traditional visual methods. These methods are both tedious and difficult to provide new polyp features for training data. Therefore, our research aims to efficiently generate high-quality polyp samples, so as to effectively expand the polyp dataset. In this study, we first added the attention mechanism to the… More >

  • Open Access

    ARTICLE

    Sensitivity Analysis of Structural Dynamic Behavior Based on the Sparse Polynomial Chaos Expansion and Material Point Method

    Wenpeng Li1, Zhenghe Liu1, Yujing Ma1, Zhuxuan Meng2,*, Ji Ma3, Weisong Liu2, Vinh Phu Nguyen4

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1515-1543, 2025, DOI:10.32604/cmes.2025.059235 - 27 January 2025

    Abstract This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior. Physical models involving deformation, such as collisions, vibrations, and penetration, are developed using the material point method. To reduce the computational cost of Monte Carlo simulations, response surface models are created as surrogate models for the material point system to approximate its dynamic behavior. An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order, effectively balancing the accuracy and computational efficiency of the surrogate model. Based on the sparse polynomial More >

  • Open Access

    ARTICLE

    A Novel Bi-Level VSC-DC Transmission Expansion Planning Method of VSC-DC for Power System Flexibility and Stability Enhancement

    Weigang Jin1, Lei Chen2,*, Shencong Zheng2, Yuqi Jiang2, Yifei Li2, Hongkun Chen2

    Energy Engineering, Vol.121, No.11, pp. 3161-3179, 2024, DOI:10.32604/ee.2024.054068 - 21 October 2024

    Abstract Investigating flexibility and stability boosting transmission expansion planning (TEP) methods can increase the renewable energy (RE) consumption of the power systems. In this study, we propose a bi-level TEP method for voltage-source-converter-based direct current (VSC-DC), focusing on flexibility and stability enhancement. First, we established the TEP framework of VSC-DC, by introducing the evaluation indices to quantify the power system flexibility and stability. Subsequently, we propose a bi-level VSC-DC TEP model: the upper-level model acquires the optimal VSC-DC planning scheme by using the improved moth flame optimization (IMFO) algorithm, and the lower-level model evaluates the flexibility More >

  • Open Access

    ARTICLE

    A Non-Intrusive Stochastic Phase-Field for Fatigue Fracture in Brittle Materials with Uncertainty in Geometry and Material Properties

    Rajan Aravind1,2, Sundararajan Natarajan1, Krishnankutty Jayakumar2, Ratna Kumar Annabattula1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 997-1032, 2024, DOI:10.32604/cmes.2024.053047 - 27 September 2024

    Abstract Understanding the probabilistic nature of brittle materials due to inherent dispersions in their mechanical properties is important to assess their reliability and safety for sensitive engineering applications. This is all the more important when elements composed of brittle materials are exposed to dynamic environments, resulting in catastrophic fatigue failures. The authors propose the application of a non-intrusive polynomial chaos expansion method for probabilistic studies on brittle materials undergoing fatigue fracture when geometrical parameters and material properties are random independent variables. Understanding the probabilistic nature of fatigue fracture in brittle materials is crucial for ensuring the… More >

  • Open Access

    ARTICLE

    Sensitivity Analysis of Electromagnetic Scattering from Dielectric Targets with Polynomial Chaos Expansion and Method of Moments

    Yujing Ma1,4, Zhongwang Wang2, Jieyuan Zhang3, Ruijin Huo1,4, Xiaohui Yuan1,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 2079-2102, 2024, DOI:10.32604/cmes.2024.048488 - 20 May 2024

    Abstract In this paper, an adaptive polynomial chaos expansion method (PCE) based on the method of moments (MoM) is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis. The MoM is applied to accurately solve the electric field integral equation (EFIE) of electromagnetic scattering from homogeneous dielectric targets. Within the bistatic radar cross section (RCS) as the research object, the adaptive PCE algorithm is devoted to selecting the appropriate order to construct the multivariate surrogate model. The corresponding sensitivity results are given by the further derivative operation, which is compared with those of More >

Displaying 1-10 on page 1 of 82. Per Page