Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (45)
  • Open Access

    ARTICLE

    Graph-Based Intrusion Detection with Explainable Edge Classification Learning

    Jaeho Shin1, Jaekwang Kim2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-26, 2026, DOI:10.32604/cmc.2025.068767 - 10 November 2025

    Abstract Network attacks have become a critical issue in the internet security domain. Artificial intelligence technology-based detection methodologies have attracted attention; however, recent studies have struggled to adapt to changing attack patterns and complex network environments. In addition, it is difficult to explain the detection results logically using artificial intelligence. We propose a method for classifying network attacks using graph models to explain the detection results. First, we reconstruct the network packet data into a graphical structure. We then use a graph model to predict network attacks using edge classification. To explain the prediction results, we… More >

  • Open Access

    ARTICLE

    LinguTimeX a Framework for Multilingual CTC Detection Using Explainable AI and Natural Language Processing

    Omar Darwish1, Shorouq Al-Eidi2, Abdallah Al-Shorman1, Majdi Maabreh3, Anas Alsobeh4, Plamen Zahariev5, Yahya Tashtoush6,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.068266 - 10 November 2025

    Abstract Covert timing channels (CTC) exploit network resources to establish hidden communication pathways, posing significant risks to data security and policy compliance. Therefore, detecting such hidden and dangerous threats remains one of the security challenges. This paper proposes LinguTimeX, a new framework that combines natural language processing with artificial intelligence, along with explainable Artificial Intelligence (AI) not only to detect CTC but also to provide insights into the decision process. LinguTimeX performs multidimensional feature extraction by fusing linguistic attributes with temporal network patterns to identify covert channels precisely. LinguTimeX demonstrates strong effectiveness in detecting CTC across… More >

  • Open Access

    ARTICLE

    Explainable Machine Learning for Phishing Detection: Bridging Technical Efficacy and Legal Accountability in Cyberspace Security

    MD Hamid Borkot Tulla1,*, MD Moniur Rahman Ratan2, Rashid MD Mamunur3, Abdullah Hil Safi Sohan4, MD Matiur Rahman5

    Journal of Cyber Security, Vol.7, pp. 675-691, 2025, DOI:10.32604/jcs.2025.074737 - 24 December 2025

    Abstract Phishing is considered one of the most widespread cybercrimes due to the fact that it combines both technical and human vulnerabilities with the intention of stealing sensitive information. Traditional blacklist and heuristic-based defenses fail to detect such emerging attack patterns; hence, intelligent and transparent detection systems are needed. This paper proposes an explainable machine learning framework that integrates predictive performance with regulatory accountability. Four models were trained and tested on a balanced dataset of 10,000 URLs, comprising 5000 phishing and 5000 legitimate samples, each characterized by 48 lexical and content-based features: Decision Tree, XGBoost, Logistic… More >

  • Open Access

    REVIEW

    Next-Generation Lightweight Explainable AI for Cybersecurity: A Review on Transparency and Real-Time Threat Mitigation

    Khulud Salem Alshudukhi1,*, Sijjad Ali2, Mamoona Humayun3,*, Omar Alruwaili4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3029-3085, 2025, DOI:10.32604/cmes.2025.073705 - 23 December 2025

    Abstract Problem: The integration of Artificial Intelligence (AI) into cybersecurity, while enhancing threat detection, is hampered by the “black box” nature of complex models, eroding trust, accountability, and regulatory compliance. Explainable AI (XAI) aims to resolve this opacity but introduces a critical new vulnerability: the adversarial exploitation of model explanations themselves. Gap: Current research lacks a comprehensive synthesis of this dual role of XAI in cybersecurity—as both a tool for transparency and a potential attack vector. There is a pressing need to systematically analyze the trade-offs between interpretability and security, evaluate defense mechanisms, and outline a… More >

  • Open Access

    ARTICLE

    PPG Based Digital Biomarker for Diabetes Detection with Multiset Spatiotemporal Feature Fusion and XAI

    Mubashir Ali1,2, Jingzhen Li1, Zedong Nie1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4153-4177, 2025, DOI:10.32604/cmes.2025.073048 - 23 December 2025

    Abstract Diabetes imposes a substantial burden on global healthcare systems. Worldwide, nearly half of individuals with diabetes remain undiagnosed, while conventional diagnostic techniques are often invasive, painful, and expensive. In this study, we propose a noninvasive approach for diabetes detection using photoplethysmography (PPG), which is widely integrated into modern wearable devices. First, we derived velocity plethysmography (VPG) and acceleration plethysmography (APG) signals from PPG to construct multi-channel waveform representations. Second, we introduced a novel multiset spatiotemporal feature fusion framework that integrates hand-crafted temporal, statistical, and nonlinear features with recursive feature elimination and deep feature extraction using… More >

  • Open Access

    REVIEW

    A Systematic Review of Multimodal Fusion and Explainable AI Applications in Breast Cancer Diagnosis

    Deema Alzamil1,2,*, Bader Alkhamees2, Mohammad Mehedi Hassan2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 2971-3027, 2025, DOI:10.32604/cmes.2025.070867 - 23 December 2025

    Abstract Breast cancer diagnosis relies heavily on many kinds of information from diverse sources—like mammogram images, ultrasound scans, patient records, and genetic tests—but most AI tools look at only one of these at a time, which limits their ability to produce accurate and comprehensive decisions. In recent years, multimodal learning has emerged, enabling the integration of heterogeneous data to improve performance and diagnostic accuracy. However, doctors cannot always see how or why these AI tools make their choices, which is a significant bottleneck in their reliability, along with adoption in clinical settings. Hence, people are adding… More >

  • Open Access

    ARTICLE

    HI-XDR: Hybrid Intelligent Framework for Adversarial-Resilient Anomaly Detection and Adaptive Cyber Response

    Abd Rahman Wahid*

    Journal of Cyber Security, Vol.7, pp. 589-614, 2025, DOI:10.32604/jcs.2025.071622 - 11 December 2025

    Abstract The rapid increase in cyber attacks requires accurate, adaptive, and interpretable detection and response mechanisms. Conventional security solutions remain fragmented, leaving gaps that attackers can exploit. This study introduces the HI-XDR (Hybrid Intelligent Extended Detection and Response) framework, which combines network-based Suricata rules and endpoint-based Wazuh rules into a unified dataset containing 45,705 entries encoded into 1058 features. A semantic-aware autoencoder-based anomaly detection module is trained and strengthened through adversarial learning using Projected Gradient Descent, achieving a minimum mean squared error of 0.0015 and detecting 458 anomaly rules at the 99th percentile threshold. A comparative… More >

  • Open Access

    REVIEW

    Deep Learning and Federated Learning in Human Activity Recognition with Sensor Data: A Comprehensive Review

    Farhad Mortezapour Shiri*, Thinagaran Perumal, Norwati Mustapha, Raihani Mohamed

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1389-1485, 2025, DOI:10.32604/cmes.2025.071858 - 26 November 2025

    Abstract Human Activity Recognition (HAR) represents a rapidly advancing research domain, propelled by continuous developments in sensor technologies and the Internet of Things (IoT). Deep learning has become the dominant paradigm in sensor-based HAR systems, offering significant advantages over traditional machine learning methods by eliminating manual feature extraction, enhancing recognition accuracy for complex activities, and enabling the exploitation of unlabeled data through generative models. This paper provides a comprehensive review of recent advancements and emerging trends in deep learning models developed for sensor-based human activity recognition (HAR) systems. We begin with an overview of fundamental HAR… More > Graphic Abstract

    Deep Learning and Federated Learning in Human Activity Recognition with Sensor Data: A Comprehensive Review

  • Open Access

    ARTICLE

    A Lightweight Explainable Deep Learning for Blood Cell Classification

    Ngoc-Hoang-Quyen Nguyen1, Thanh-Tung Nguyen2, Anh-Cang Phan3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2435-2456, 2025, DOI:10.32604/cmes.2025.070419 - 26 November 2025

    Abstract Blood cell disorders are among the leading causes of serious diseases such as leukemia, anemia, blood clotting disorders, and immune-related conditions. The global incidence of hematological diseases is increasing, affecting both children and adults. In clinical practice, blood smear analysis is still largely performed manually, relying heavily on the experience and expertise of laboratory technicians or hematologists. This manual process introduces risks of diagnostic errors, especially in cases with rare or morphologically ambiguous cells. The situation is more critical in developing countries, where there is a shortage of specialized medical personnel and limited access to… More > Graphic Abstract

    A Lightweight Explainable Deep Learning for Blood Cell Classification

  • Open Access

    ARTICLE

    Systematic Analysis of Latent Fingerprint Patterns through Fractionally Optimized CNN Model for Interpretable Multi-Output Identification

    Mubeen Sabir1, Zeshan Aslam Khan2,*, Muhammad Waqar2, Khizer Mehmood1, Muhammad Junaid Ali Asif Raja3, Naveed Ishtiaq Chaudhary4, Khalid Mehmood Cheema5, Muhammad Asif Zahoor Raja4, Muhammad Farhan Khan6, Syed Sohail Ahmed7

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 807-855, 2025, DOI:10.32604/cmes.2025.068131 - 30 October 2025

    Abstract Fingerprint classification is a biometric method for crime prevention. For the successful completion of various tasks, such as official attendance, banking transactions, and membership requirements, fingerprint classification methods require improvement in terms of accuracy, speed, and the interpretability of non-linear demographic features. Researchers have introduced several CNN-based fingerprint classification models with improved accuracy, but these models often lack effective feature extraction mechanisms and complex multineural architectures. In addition, existing literature primarily focuses on gender classification rather than accurately, efficiently, and confidently classifying hands and fingers through the interpretability of prominent features. This research seeks to… More >

Displaying 1-10 on page 1 of 45. Per Page