Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16)
  • Open Access

    ARTICLE

    A Hybrid Approach for Heavily Occluded Face Detection Using Histogram of Oriented Gradients and Deep Learning Models

    Thaer Thaher1,*, Muhammed Saffarini2, Majdi Mafarja3, Abdulaziz Alashbi4, Abdul Hakim Mohamed5, Ayman A. El-Saleh6

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2359-2394, 2025, DOI:10.32604/cmes.2025.065388 - 31 August 2025

    Abstract Face detection is a critical component in modern security, surveillance, and human-computer interaction systems, with widespread applications in smartphones, biometric access control, and public monitoring. However, detecting faces with high levels of occlusion, such as those covered by masks, veils, or scarves, remains a significant challenge, as traditional models often fail to generalize under such conditions. This paper presents a hybrid approach that combines traditional handcrafted feature extraction technique called Histogram of Oriented Gradients (HOG) and Canny edge detection with modern deep learning models. The goal is to improve face detection accuracy under occlusions. The… More >

  • Open Access

    REVIEW

    A Comprehensive Review of Face Detection Techniques for Occluded Faces: Methods, Datasets, and Open Challenges

    Thaer Thaher1,*, Majdi Mafarja2, Muhammed Saffarini3, Abdul Hakim H. M. Mohamed4, Ayman A. El-Saleh5

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 2615-2673, 2025, DOI:10.32604/cmes.2025.064857 - 30 June 2025

    Abstract Detecting faces under occlusion remains a significant challenge in computer vision due to variations caused by masks, sunglasses, and other obstructions. Addressing this issue is crucial for applications such as surveillance, biometric authentication, and human-computer interaction. This paper provides a comprehensive review of face detection techniques developed to handle occluded faces. Studies are categorized into four main approaches: feature-based, machine learning-based, deep learning-based, and hybrid methods. We analyzed state-of-the-art studies within each category, examining their methodologies, strengths, and limitations based on widely used benchmark datasets, highlighting their adaptability to partial and severe occlusions. The review… More >

  • Open Access

    REVIEW

    A Comprehensive Review of Face Detection/Recognition Algorithms and Competitive Datasets to Optimize Machine Vision

    Mahmood Ul Haq1, Muhammad Athar Javed Sethi1, Sadique Ahmad2, Naveed Ahmad3, Muhammad Shahid Anwar4,*, Alpamis Kutlimuratov5

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1-24, 2025, DOI:10.32604/cmc.2025.063341 - 09 June 2025

    Abstract Face recognition has emerged as one of the most prominent applications of image analysis and understanding, gaining considerable attention in recent years. This growing interest is driven by two key factors: its extensive applications in law enforcement and the commercial domain, and the rapid advancement of practical technologies. Despite the significant advancements, modern recognition algorithms still struggle in real-world conditions such as varying lighting conditions, occlusion, and diverse facial postures. In such scenarios, human perception is still well above the capabilities of present technology. Using the systematic mapping study, this paper presents an in-depth review More >

  • Open Access

    ARTICLE

    A Framework for Driver Drowsiness Monitoring Using a Convolutional Neural Network and the Internet of Things

    Muhamad Irsan1,2,*, Rosilah Hassan2, Anwar Hassan Ibrahim3, Mohamad Khatim Hasan2, Meng Chun Lam2, Wan Mohd Hirwani Wan Hussain4

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 157-174, 2024, DOI:10.32604/iasc.2024.042193 - 21 May 2024

    Abstract One of the major causes of road accidents is sleepy drivers. Such accidents typically result in fatalities and financial losses and disadvantage other road users. Numerous studies have been conducted to identify the driver’s sleepiness and integrate it into a warning system. Most studies have examined how the mouth and eyelids move. However, this limits the system’s ability to identify drowsiness traits. Therefore, this study designed an Accident Detection Framework (RPK) that could be used to reduce road accidents due to sleepiness and detect the location of accidents. The drowsiness detection model used three facial… More >

  • Open Access

    ARTICLE

    Automated Video-Based Face Detection Using Harris Hawks Optimization with Deep Learning

    Latifah Almuqren1, Manar Ahmed Hamza2,*, Abdullah Mohamed3, Amgad Atta Abdelmageed2

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 4917-4933, 2023, DOI:10.32604/cmc.2023.037738 - 29 April 2023

    Abstract Face recognition technology automatically identifies an individual from image or video sources. The detection process can be done by attaining facial characteristics from the image of a subject face. Recent developments in deep learning (DL) and computer vision (CV) techniques enable the design of automated face recognition and tracking methods. This study presents a novel Harris Hawks Optimization with deep learning-empowered automated face detection and tracking (HHODL-AFDT) method. The proposed HHODL-AFDT model involves a Faster region based convolution neural network (RCNN)-based face detection model and HHO-based hyperparameter optimization process. The presented optimal Faster RCNN model… More >

  • Open Access

    ARTICLE

    Drone for Dynamic Monitoring and Tracking with Intelligent Image Analysis

    Ching-Bang Yao1, Chang-Yi Kao2,*, Jiong-Ting Lin3

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 2233-2252, 2023, DOI:10.32604/iasc.2023.034488 - 05 January 2023

    Abstract Traditional monitoring systems that are used in shopping malls or community management, mostly use a remote control to monitor and track specific objects; therefore, it is often impossible to effectively monitor the entire environment. When finding a suspicious person, the tracked object cannot be locked in time for tracking. This research replaces the traditional fixed-point monitor with the intelligent drone and combines the image processing technology and automatic judgment for the movements of the monitored person. This intelligent system can effectively improve the shortcomings of low efficiency and high cost of the traditional monitor system.… More >

  • Open Access

    ARTICLE

    Deep Learning Based Face Detection and Identification of Criminal Suspects

    S. Sandhya1, A. Balasundaram2,*, Ayesha Shaik1

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2331-2343, 2023, DOI:10.32604/cmc.2023.032715 - 31 October 2022

    Abstract Occurrence of crimes has been on the constant rise despite the emerging discoveries and advancements in the technological field in the past decade. One of the most tedious tasks is to track a suspect once a crime is committed. As most of the crimes are committed by individuals who have a history of felonies, it is essential for a monitoring system that does not just detect the person’s face who has committed the crime, but also their identity. Hence, a smart criminal detection and identification system that makes use of the OpenCV Deep Neural Network… More >

  • Open Access

    ARTICLE

    Spoofing Face Detection Using Novel Edge-Net Autoencoder for Security

    Amal H. Alharbi1, S. Karthick2, K. Venkatachalam3, Mohamed Abouhawwash4,5, Doaa Sami Khafaga1,*

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 2773-2787, 2023, DOI:10.32604/iasc.2023.030763 - 17 August 2022

    Abstract Recent security applications in mobile technologies and computer systems use face recognition for high-end security. Despite numerous security techniques, face recognition is considered a high-security control. Developers fuse and carry out face identification as an access authority into these applications. Still, face identification authentication is sensitive to attacks with a 2-D photo image or captured video to access the system as an authorized user. In the existing spoofing detection algorithm, there was some loss in the recreation of images. This research proposes an unobtrusive technique to detect face spoofing attacks that apply a single frame… More >

  • Open Access

    ARTICLE

    Cancelable Multi-biometric Template Generation Based on Dual-Tree Complex Wavelet Transform

    Ahmed M. Ayoup1,*, Ashraf A. M. Khalaf1, Fahad Alraddady2, Fathi E. Abd El-Samie3, Walid El-Shafai3,5, Salwa M. Serag Eldin2,4

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 1289-1304, 2022, DOI:10.32604/iasc.2022.024381 - 08 February 2022

    Abstract In this article, we introduce a new cancelable biometric template generation layout depending on selective encryption technology and Dual-Tree Complex Wavelet Transform (DT-CWT) fusion. The input face biometric is entered into the automatic face-segmentation (Viola-Jones) algorithm to detect the object in a short time. Viola-Jones algorithm can detect the left eye, right eye, nose, and mouth of the input biometric image. The encoder can choose the left or right eye to generate a cancelable biometric template. The selected eye image of size M × N is XORed with the created pseudo-random number (PRN) matrix CM × N to… More >

  • Open Access

    ARTICLE

    Criminal Persons Recognition Using Improved Feature Extraction Based Local Phase Quantization

    P. Karuppanan1,*, K. Dhanalakshmi2

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 1025-1043, 2022, DOI:10.32604/iasc.2022.023712 - 08 February 2022

    Abstract Facial recognition is a trending technology that can identify or verify an individual from a video frame or digital image from any source. A major concern of facial recognition is achieving the accuracy on classification, precision, recall and F1-Score. Traditionally, numerous techniques involved in the working principle of facial recognition, as like Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Subspace Decomposition Method, Eigen Feature extraction Method and all are characterized as instable, poor generalization which leads to poor classification. But the simplified method is feature extraction by comparing the particular facial features of the… More >

Displaying 1-10 on page 1 of 16. Per Page