Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Numerical Simulation of Low Cycle Fatigue Behavior of Ti2AlNb Alloy Subcomponents

    Yanju Wang1, Zhenyu Zhu2, Aixue Sha1, Wenfeng Hao3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2655-2676, 2023, DOI:10.32604/cmes.2023.025749

    Abstract Many titanium alloy subcomponents are subjected to fatigue loading in aerospace engineering, resulting in fatigue failure. The fatigue behavior of Ti2AlNb alloy subcomponents was investigated based on the Seeger fatigue life theory and the improved Lemaitre damage evolution theory. Firstly, the finite element models of the standard openhole specimen and Y-section subcomponents have been established by ABAQUS. The damage model parameters were determined by fatigue tests, and the reliability of fatigue life simulation results of the Ti2AlNb alloy standard open-hole specimen was verified. Meanwhile, the fatigue life of Ti2AlNb alloy Y-section subcomponents was predicted. Under the same initial conditions, the… More >

  • Open Access

    ARTICLE

    Process Evaluation, Tensile Properties and Fatigue Resistance of Chopped and Continuous Fiber Reinforced Thermoplastic Composites by 3D Printing

    Wei Chen1,2, Qiuju Zhang1,2,*, Han Cao1,2, Ye Yuan1,2

    Journal of Renewable Materials, Vol.10, No.2, pp. 329-358, 2022, DOI:10.32604/jrm.2022.016374

    Abstract The aim of this article was to comprehensively evaluate the manufacturing process, tensile properties and fatigue resistance of the chopped and continuous fiber reinforced thermoplastic composites (CFRTPCs) by 3D printing. The main results included: the common defects of the printed CFRTPCs contained redundant and accumulation defects, scratch and warping defects; the continuous fiber contributed to the dimensional stability and accuracy of width and thickness; associations between mass percentage of fiber reinforcement and the averages of elastic modulus, strain at break and ultimate tensile strength were approximately linear based on tensile test results; the fatigue resistance improved with the increasing fiber… More > Graphic Abstract

    Process Evaluation, Tensile Properties and Fatigue Resistance of Chopped and Continuous Fiber Reinforced Thermoplastic Composites by 3D Printing

  • Open Access

    ARTICLE

    The Effects of Different Post-Heat Treatments on Rolling Contact Fatigue Behaviors of Direct Laser Cladding Inconel 625 Coatings

    Qiaoxin Zhang1,2, Rui Chen1, Ding Jin2, Chen Zhou2,*, Xuewu Li3,4,5,*

    Journal of Renewable Materials, Vol.9, No.1, pp. 129-144, 2021, DOI:10.32604/jrm.2021.011596

    Abstract In this paper, the microstructures and rolling contact fatigue behaviors of laser cladding Inconel 625 coatings with or without post-heat treatments were analyzed. The results revealed that the fatigue resistance of the laser cladding coating after any post-heat treatment was worse than that of the as-deposited coating. First, through the finite element analysis, the distribution of stress along the thickness direction of the coating was obtained, and it was concluded that the bonding interface between the coating and the matrix had little effect on the fatigue properties of the coating. Then X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy… More >

  • Open Access

    ABSTRACT

    Finite Element Analysis of Fatigue Behavior of Stent in Tapered Arteries

    Xiang Shen1,*, Hongfei Zhu1, Song Ji1, Jiabao Jiang1, Yongquan Deng1

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 65-65, 2019, DOI:10.32604/mcb.2019.05737

    Abstract In order to open up the blocked lumen and remodel the blood environment, vascular stents were usually used to transplant into narrowed blood vessels. Due to its minimally invasive and highly efficiency, stenting has achieved great success in the treatment of cardiovascular diseases. However, failure of stents due to its fatigue will damage the arterial wall, leading to adverse reactions such as thrombosis and in-stent restenosis (ISR), which severely limited its long-term outcome. Therefore, it was very important to predict the service life of stents, especially in tapered arteries.
    FEA was adopted to study the effects of arterial tapering… More >

  • Open Access

    ABSTRACT

    Influence of Subjection to SBF on Ultra-high Cycle Fatigue Behaviors of Ti-6Al-4V

    LIU Yong-jie, TIAN Ren-hui, OUYANG Qiao-lin, WANG Qing-yuan

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.16, No.1, pp. 5-6, 2011, DOI:10.3970/icces.2011.016.005

    Abstract Ti-6Al-4V is widely used in biology engineering as well medical implant. Clinical investigations show that TC4 implant could have rupture of passivation film and visible corrosion. To predict service life of the Ti-6Al-4V implant, it is necessary to study its ultra-high cycle fatigue behaviors in physiological environment exceeding 107 cycles. In this paper, using the ultrasonic fatigue testing technique, the high cycle and ultra-high cycle fatigue properties of Ti-6Al-4V subjection to simulated body fluid (SBF) in body temperature were studied and compared with that of normal Ti-6Al-4V. The experimental results show that SBF subjection has slight influence on the ultra-high… More >

Displaying 1-10 on page 1 of 5. Per Page