Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (229)
  • Open Access

    ARTICLE

    Human Gait Recognition Based on Sequential Deep Learning and Best Features Selection

    Ch Avais Hanif1, Muhammad Ali Mughal1,*, Muhammad Attique Khan2, Usman Tariq3, Ye Jin Kim4, Jae-Hyuk Cha4

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5123-5140, 2023, DOI:10.32604/cmc.2023.038120

    Abstract Gait recognition is an active research area that uses a walking theme to identify the subject correctly. Human Gait Recognition (HGR) is performed without any cooperation from the individual. However, in practice, it remains a challenging task under diverse walking sequences due to the covariant factors such as normal walking and walking with wearing a coat. Researchers, over the years, have worked on successfully identifying subjects using different techniques, but there is still room for improvement in accuracy due to these covariant factors. This paper proposes an automated model-free framework for human gait recognition in this article. There are a… More >

  • Open Access

    ARTICLE

    Managing Health Treatment by Optimizing Complex Lab-Developed Test Configurations: A Health Informatics Perspective

    Uzma Afzal1, Tariq Mahmood2, Ali Mustafa Qamar3,*, Ayaz H. Khan4,5

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6251-6267, 2023, DOI:10.32604/cmc.2023.037653

    Abstract A complex Laboratory Developed Test (LDT) is a clinical test developed within a single laboratory. It is typically configured from many feature constraints from clinical repositories, which are part of the existing Laboratory Information Management System (LIMS). Although these clinical repositories are automated, support for managing patient information with test results of an LDT is also integrated within the existing LIMS. Still, the support to configure LDTs design needs to be made available even in standard LIMS packages. The manual configuration of LDTs is a complex process and can generate configuration inconsistencies because many constraints between features can remain unsatisfied.… More >

  • Open Access

    ARTICLE

    MSEs Credit Risk Assessment Model Based on Federated Learning and Feature Selection

    Zhanyang Xu1, Jianchun Cheng1,*, Luofei Cheng1, Xiaolong Xu1,2, Muhammad Bilal3

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5573-5595, 2023, DOI:10.32604/cmc.2023.037287

    Abstract Federated learning has been used extensively in business innovation scenarios in various industries. This research adopts the federated learning approach for the first time to address the issue of bank-enterprise information asymmetry in the credit assessment scenario. First, this research designs a credit risk assessment model based on federated learning and feature selection for micro and small enterprises (MSEs) using multi-dimensional enterprise data and multi-perspective enterprise information. The proposed model includes four main processes: namely encrypted entity alignment, hybrid feature selection, secure multi-party computation, and global model updating. Secondly, a two-step feature selection algorithm based on wrapper and filter is… More >

  • Open Access

    ARTICLE

    Feature Selection with Deep Reinforcement Learning for Intrusion Detection System

    S. Priya1,*, K. Pradeep Mohan Kumar2

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3339-3353, 2023, DOI:10.32604/csse.2023.030630

    Abstract An intrusion detection system (IDS) becomes an important tool for ensuring security in the network. In recent times, machine learning (ML) and deep learning (DL) models can be applied for the identification of intrusions over the network effectively. To resolve the security issues, this paper presents a new Binary Butterfly Optimization algorithm based on Feature Selection with DRL technique, called BBOFS-DRL for intrusion detection. The proposed BBOFSDRL model mainly accomplishes the recognition of intrusions in the network. To attain this, the BBOFS-DRL model initially designs the BBOFS algorithm based on the traditional butterfly optimization algorithm (BOA) to elect feature subsets.… More >

  • Open Access

    ARTICLE

    Adaptive Kernel Firefly Algorithm Based Feature Selection and Q-Learner Machine Learning Models in Cloud

    I. Mettildha Mary1,*, K. Karuppasamy2

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 2667-2685, 2023, DOI:10.32604/csse.2023.031114

    Abstract CC’s (Cloud Computing) networks are distributed and dynamic as signals appear/disappear or lose significance. MLTs (Machine learning Techniques) train datasets which sometime are inadequate in terms of sample for inferring information. A dynamic strategy, DevMLOps (Development Machine Learning Operations) used in automatic selections and tunings of MLTs result in significant performance differences. But, the scheme has many disadvantages including continuity in training, more samples and training time in feature selections and increased classification execution times. RFEs (Recursive Feature Eliminations) are computationally very expensive in its operations as it traverses through each feature without considering correlations between them. This problem can… More >

  • Open Access

    ARTICLE

    Multi-Strategy Boosted Spider Monkey Optimization Algorithm for Feature Selection

    Jianguo Zheng, Shuilin Chen*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3619-3635, 2023, DOI:10.32604/csse.2023.038025

    Abstract To solve the problem of slow convergence and easy to get into the local optimum of the spider monkey optimization algorithm, this paper presents a new algorithm based on multi-strategy (ISMO). First, the initial population is generated by a refracted opposition-based learning strategy to enhance diversity and ergodicity. Second, this paper introduces a non-linear adaptive dynamic weight factor to improve convergence efficiency. Then, using the crisscross strategy, using the horizontal crossover to enhance the global search and vertical crossover to keep the diversity of the population to avoid being trapped in the local optimum. At last, we adopt a Gauss-Cauchy… More >

  • Open Access

    ARTICLE

    Spotted Hyena Optimizer Driven Deep Learning-Based Drug-Drug Interaction Prediction in Big Data Environment

    Mohammed Jasim Mohammed Jasim1, Shakir Fattah Kak2, Zainab Salih Ageed3, Subhi R. M. Zeebaree4,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3831-3845, 2023, DOI:10.32604/csse.2023.037580

    Abstract Nowadays, smart healthcare and biomedical research have marked a substantial growth rate in terms of their presence in the literature, computational approaches, and discoveries, owing to which a massive quantity of experimental datasets was published and generated (Big Data) for describing and validating such novelties. Drug-drug interaction (DDI) significantly contributed to drug administration and development. It continues as the main obstacle in offering inexpensive and safe healthcare. It normally happens for patients with extensive medication, leading them to take many drugs simultaneously. DDI may cause side effects, either mild or severe health problems. This reduced victims’ quality of life and… More >

  • Open Access

    ARTICLE

    Blockchain Assisted Optimal Machine Learning Based Cyberattack Detection and Classification Scheme

    Manal Abdullah Alohali1, Muna Elsadig1, Fahd N. Al-Wesabi2,*, Mesfer Al Duhayyim3, Anwer Mustafa Hilal4, Abdelwahed Motwakel4

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3583-3598, 2023, DOI:10.32604/csse.2023.037545

    Abstract With recent advancements in information and communication technology, a huge volume of corporate and sensitive user data was shared consistently across the network, making it vulnerable to an attack that may be brought some factors under risk: data availability, confidentiality, and integrity. Intrusion Detection Systems (IDS) were mostly exploited in various networks to help promptly recognize intrusions. Nowadays, blockchain (BC) technology has received much more interest as a means to share data without needing a trusted third person. Therefore, this study designs a new Blockchain Assisted Optimal Machine Learning based Cyberattack Detection and Classification (BAOML-CADC) technique. In the BAOML-CADC technique,… More >

  • Open Access

    ARTICLE

    Covid-19 Detection Using Deep Correlation-Grey Wolf Optimizer

    K. S. Bhuvaneshwari1, Ahmed Najat Ahmed2, Mehedi Masud3, Samah H. Alajmani4, Mohamed Abouhawwash5,6,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 2933-2945, 2023, DOI:10.32604/csse.2023.034288

    Abstract The immediate and quick spread of the coronavirus has become a life-threatening disease around the globe. The widespread illness has dramatically changed almost all sectors, moving from offline to online, resulting in a new normal lifestyle for people. The impact of coronavirus is tremendous in the healthcare sector, which has experienced a decline in the first quarter of 2020. This pandemic has created an urge to use computer-aided diagnosis techniques for classifying the Covid-19 dataset to reduce the burden of clinical results. The current situation motivated me to choose correlation-based development called correlation-based grey wolf optimizer to perform accurate classification.… More >

  • Open Access

    ARTICLE

    Learning-Based Artificial Algae Algorithm with Optimal Machine Learning Enabled Malware Detection

    Khaled M. Alalayah1, Fatma S. Alrayes2, Mohamed K. Nour3, Khadija M. Alaidarous1, Ibrahim M. Alwayle1, Heba Mohsen4, Ibrahim Abdulrab Ahmed5, Mesfer Al Duhayyim6,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3103-3119, 2023, DOI:10.32604/csse.2023.034034

    Abstract Malware is a ‘malicious software program that performs multiple cyberattacks on the Internet, involving fraud, scams, nation-state cyberwar, and cybercrime. Such malicious software programs come under different classifications, namely Trojans, viruses, spyware, worms, ransomware, Rootkit, botnet malware, etc. Ransomware is a kind of malware that holds the victim’s data hostage by encrypting the information on the user’s computer to make it inaccessible to users and only decrypting it; then, the user pays a ransom procedure of a sum of money. To prevent detection, various forms of ransomware utilize more than one mechanism in their attack flow in conjunction with Machine… More >

Displaying 31-40 on page 4 of 229. Per Page