Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (217)
  • Open Access

    ARTICLE

    Deep Learning-Enhanced Brain Tumor Prediction via Entropy-Coded BPSO in CIELAB Color Space

    Mudassir Khalil1, Muhammad Imran Sharif2,*, Ahmed Naeem3, Muhammad Umar Chaudhry1, Hafiz Tayyab Rauf4,*, Adham E. Ragab5

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2031-2047, 2023, DOI:10.32604/cmc.2023.043687

    Abstract Early detection of brain tumors is critical for effective treatment planning. Identifying tumors in their nascent stages can significantly enhance the chances of patient survival. While there are various types of brain tumors, each with unique characteristics and treatment protocols, tumors are often minuscule during their initial stages, making manual diagnosis challenging, time-consuming, and potentially ambiguous. Current techniques predominantly used in hospitals involve manual detection via MRI scans, which can be costly, error-prone, and time-intensive. An automated system for detecting brain tumors could be pivotal in identifying the disease in its earliest phases. This research applies several data augmentation techniques… More >

  • Open Access

    ARTICLE

    Diagnosis of Autism Spectrum Disorder by Imperialistic Competitive Algorithm and Logistic Regression Classifier

    Shabana R. Ziyad1,*, Liyakathunisa2, Eman Aljohani2, I. A. Saeed3

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1515-1534, 2023, DOI:10.32604/cmc.2023.040874

    Abstract Autism spectrum disorder (ASD), classified as a developmental disability, is now more common in children than ever. A drastic increase in the rate of autism spectrum disorder in children worldwide demands early detection of autism in children. Parents can seek professional help for a better prognosis of the child’s therapy when ASD is diagnosed under five years. This research study aims to develop an automated tool for diagnosing autism in children. The computer-aided diagnosis tool for ASD detection is designed and developed by a novel methodology that includes data acquisition, feature selection, and classification phases. The most deterministic features are… More >

  • Open Access

    ARTICLE

    Chimp Optimization Algorithm Based Feature Selection with Machine Learning for Medical Data Classification

    Firas Abedi1, Hayder M. A. Ghanimi2, Abeer D. Algarni3, Naglaa F. Soliman3,*, Walid El-Shafai4,5, Ali Hashim Abbas6, Zahraa H. Kareem7, Hussein Muhi Hariz8, Ahmed Alkhayyat9

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2791-2814, 2023, DOI:10.32604/csse.2023.038762

    Abstract Data mining plays a crucial role in extracting meaningful knowledge from large-scale data repositories, such as data warehouses and databases. Association rule mining, a fundamental process in data mining, involves discovering correlations, patterns, and causal structures within datasets. In the healthcare domain, association rules offer valuable opportunities for building knowledge bases, enabling intelligent diagnoses, and extracting invaluable information rapidly. This paper presents a novel approach called the Machine Learning based Association Rule Mining and Classification for Healthcare Data Management System (MLARMC-HDMS). The MLARMC-HDMS technique integrates classification and association rule mining (ARM) processes. Initially, the chimp optimization algorithm-based feature selection (COAFS)… More >

  • Open Access

    ARTICLE

    Automated Pavement Crack Detection Using Deep Feature Selection and Whale Optimization Algorithm

    Shorouq Alshawabkeh, Li Wu*, Daojun Dong, Yao Cheng, Liping Li, Mohammad Alanaqreh

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 63-77, 2023, DOI:10.32604/cmc.2023.042183

    Abstract Pavement crack detection plays a crucial role in ensuring road safety and reducing maintenance expenses. Recent advancements in deep learning (DL) techniques have shown promising results in detecting pavement cracks; however, the selection of relevant features for classification remains challenging. In this study, we propose a new approach for pavement crack detection that integrates deep learning for feature extraction, the whale optimization algorithm (WOA) for feature selection, and random forest (RF) for classification. The performance of the models was evaluated using accuracy, recall, precision, F1 score, and area under the receiver operating characteristic curve (AUC). Our findings reveal that Model… More >

  • Open Access

    ARTICLE

    Binary Oriented Feature Selection for Valid Product Derivation in Software Product Line

    Muhammad Fezan Afzal1, Imran Khan1, Javed Rashid1,2,3, Mubbashar Saddique4,*, Heba G. Mohamed5

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3653-3670, 2023, DOI:10.32604/cmc.2023.041627

    Abstract Software Product Line (SPL) is a group of software-intensive systems that share common and variable resources for developing a particular system. The feature model is a tree-type structure used to manage SPL’s common and variable features with their different relations and problem of Crosstree Constraints (CTC). CTC problems exist in groups of common and variable features among the sub-tree of feature models more diverse in Internet of Things (IoT) devices because different Internet devices and protocols are communicated. Therefore, managing the CTC problem to achieve valid product configuration in IoT-based SPL is more complex, time-consuming, and hard. However, the CTC… More >

  • Open Access

    ARTICLE

    An Improved Jump Spider Optimization for Network Traffic Identification Feature Selection

    Hui Xu, Yalin Hu*, Weidong Cao, Longjie Han

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3239-3255, 2023, DOI:10.32604/cmc.2023.039227

    Abstract The massive influx of traffic on the Internet has made the composition of web traffic increasingly complex. Traditional port-based or protocol-based network traffic identification methods are no longer suitable for today’s complex and changing networks. Recently, machine learning has been widely applied to network traffic recognition. Still, high-dimensional features and redundant data in network traffic can lead to slow convergence problems and low identification accuracy of network traffic recognition algorithms. Taking advantage of the faster optimization-seeking capability of the jumping spider optimization algorithm (JSOA), this paper proposes a jumping spider optimization algorithm that incorporates the harris hawk optimization (HHO) and… More >

  • Open Access

    ARTICLE

    Advanced Guided Whale Optimization Algorithm for Feature Selection in BlazePose Action Recognition

    Motasem S. Alsawadi1,*, El-Sayed M. El-kenawy2, Miguel Rio1

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2767-2782, 2023, DOI:10.32604/iasc.2023.039440

    Abstract The BlazePose, which models human body skeletons as spatiotemporal graphs, has achieved fantastic performance in skeleton-based action identification. Skeleton extraction from photos for mobile devices has been made possible by the BlazePose system. A Spatial-Temporal Graph Convolutional Network (STGCN) can then forecast the actions. The Spatial-Temporal Graph Convolutional Network (STGCN) can be improved by simply replacing the skeleton input data with a different set of joints that provide more information about the activity of interest. On the other hand, existing approaches require the user to manually set the graph’s topology and then fix it across all input layers and samples.… More >

  • Open Access

    ARTICLE

    Genetic Algorithm Combined with the K-Means Algorithm: A Hybrid Technique for Unsupervised Feature Selection

    Hachemi Bennaceur, Meznah Almutairy, Norah Alhussain*

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2687-2706, 2023, DOI:10.32604/iasc.2023.038723

    Abstract The dimensionality of data is increasing very rapidly, which creates challenges for most of the current mining and learning algorithms, such as large memory requirements and high computational costs. The literature includes much research on feature selection for supervised learning. However, feature selection for unsupervised learning has only recently been studied. Finding the subset of features in unsupervised learning that enhances the performance is challenging since the clusters are indeterminate. This work proposes a hybrid technique for unsupervised feature selection called GAk-MEANS, which combines the genetic algorithm (GA) approach with the classical k-Means algorithm. In the proposed algorithm, a new… More >

  • Open Access

    ARTICLE

    Deep Learning Model for Big Data Classification in Apache Spark Environment

    T. M. Nithya1,*, R. Umanesan2, T. Kalavathidevi3, C. Selvarathi4, A. Kavitha5

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2537-2547, 2023, DOI:10.32604/iasc.2022.028804

    Abstract Big data analytics is a popular research topic due to its applicability in various real time applications. The recent advent of machine learning and deep learning models can be applied to analyze big data with better performance. Since big data involves numerous features and necessitates high computational time, feature selection methodologies using metaheuristic optimization algorithms can be adopted to choose optimum set of features and thereby improves the overall classification performance. This study proposes a new sigmoid butterfly optimization method with an optimum gated recurrent unit (SBOA-OGRU) model for big data classification in Apache Spark. The SBOA-OGRU technique involves the… More >

  • Open Access

    ARTICLE

    A Machine Learning-Based Distributed Denial of Service Detection Approach for Early Warning in Internet Exchange Points

    Salem Alhayani*, Diane R. Murphy

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2235-2259, 2023, DOI:10.32604/cmc.2023.038003

    Abstract The Internet service provider (ISP) is the heart of any country’s Internet infrastructure and plays an important role in connecting to the World Wide Web. Internet exchange point (IXP) allows the interconnection of two or more separate network infrastructures. All Internet traffic entering a country should pass through its IXP. Thus, it is an ideal location for performing malicious traffic analysis. Distributed denial of service (DDoS) attacks are becoming a more serious daily threat. Malicious actors in DDoS attacks control numerous infected machines known as botnets. Botnets are used to send numerous fake requests to overwhelm the resources of victims… More >

Displaying 1-10 on page 1 of 217. Per Page