Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (237)
  • Open Access

    ARTICLE

    Improving Thyroid Disorder Diagnosis via Ensemble Stacking and Bidirectional Feature Selection

    Muhammad Armghan Latif1, Zohaib Mushtaq2, Saad Arif3, Sara Rehman4, Muhammad Farrukh Qureshi5, Nagwan Abdel Samee6, Maali Alabdulhafith6,*, Yeong Hyeon Gu7, Mohammed A. Al-masni7

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4225-4241, 2024, DOI:10.32604/cmc.2024.047621

    Abstract Thyroid disorders represent a significant global health challenge with hypothyroidism and hyperthyroidism as two common conditions arising from dysfunction in the thyroid gland. Accurate and timely diagnosis of these disorders is crucial for effective treatment and patient care. This research introduces a comprehensive approach to improve the accuracy of thyroid disorder diagnosis through the integration of ensemble stacking and advanced feature selection techniques. Sequential forward feature selection, sequential backward feature elimination, and bidirectional feature elimination are investigated in this study. In ensemble learning, random forest, adaptive boosting, and bagging classifiers are employed. The effectiveness of… More >

  • Open Access

    ARTICLE

    Nonparametric Statistical Feature Scaling Based Quadratic Regressive Convolution Deep Neural Network for Software Fault Prediction

    Sureka Sivavelu, Venkatesh Palanisamy*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3469-3487, 2024, DOI:10.32604/cmc.2024.047407

    Abstract The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes… More >

  • Open Access

    ARTICLE

    Identification of Software Bugs by Analyzing Natural Language-Based Requirements Using Optimized Deep Learning Features

    Qazi Mazhar ul Haq1, Fahim Arif2,3, Khursheed Aurangzeb4, Noor ul Ain3, Javed Ali Khan5, Saddaf Rubab6, Muhammad Shahid Anwar7,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4379-4397, 2024, DOI:10.32604/cmc.2024.047172

    Abstract Software project outcomes heavily depend on natural language requirements, often causing diverse interpretations and issues like ambiguities and incomplete or faulty requirements. Researchers are exploring machine learning to predict software bugs, but a more precise and general approach is needed. Accurate bug prediction is crucial for software evolution and user training, prompting an investigation into deep and ensemble learning methods. However, these studies are not generalized and efficient when extended to other datasets. Therefore, this paper proposed a hybrid approach combining multiple techniques to explore their effectiveness on bug identification problems. The methods involved feature… More >

  • Open Access

    ARTICLE

    An Artificial Intelligence-Based Framework for Fruits Disease Recognition Using Deep Learning

    Irfan Haider1, Muhammad Attique Khan1,*, Muhammad Nazir1, Taerang Kim2, Jae-Hyuk Cha2

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 529-554, 2024, DOI:10.32604/csse.2023.042080

    Abstract Fruit infections have an impact on both the yield and the quality of the crop. As a result, an automated recognition system for fruit leaf diseases is important. In artificial intelligence (AI) applications, especially in agriculture, deep learning shows promising disease detection and classification results. The recent AI-based techniques have a few challenges for fruit disease recognition, such as low-resolution images, small datasets for learning models, and irrelevant feature extraction. This work proposed a new fruit leaf leaf leaf disease recognition framework using deep learning features and improved pathfinder optimization. Three fruit types have been… More >

  • Open Access

    ARTICLE

    Multi-Objective Equilibrium Optimizer for Feature Selection in High-Dimensional English Speech Emotion Recognition

    Liya Yue1, Pei Hu2, Shu-Chuan Chu3, Jeng-Shyang Pan3,4,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1957-1975, 2024, DOI:10.32604/cmc.2024.046962

    Abstract Speech emotion recognition (SER) uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions. The number of features acquired with acoustic analysis is extremely high, so we introduce a hybrid filter-wrapper feature selection algorithm based on an improved equilibrium optimizer for constructing an emotion recognition system. The proposed algorithm implements multi-objective emotion recognition with the minimum number of selected features and maximum accuracy. First, we use the information gain and Fisher Score to sort the features extracted from signals. Then, we employ a multi-objective ranking method… More >

  • Open Access

    ARTICLE

    Exploring Sequential Feature Selection in Deep Bi-LSTM Models for Speech Emotion Recognition

    Fatma Harby1, Mansor Alohali2, Adel Thaljaoui2,3,*, Amira Samy Talaat4

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2689-2719, 2024, DOI:10.32604/cmc.2024.046623

    Abstract Machine Learning (ML) algorithms play a pivotal role in Speech Emotion Recognition (SER), although they encounter a formidable obstacle in accurately discerning a speaker’s emotional state. The examination of the emotional states of speakers holds significant importance in a range of real-time applications, including but not limited to virtual reality, human-robot interaction, emergency centers, and human behavior assessment. Accurately identifying emotions in the SER process relies on extracting relevant information from audio inputs. Previous studies on SER have predominantly utilized short-time characteristics such as Mel Frequency Cepstral Coefficients (MFCCs) due to their ability to capture… More >

  • Open Access

    ARTICLE

    Human Gait Recognition for Biometrics Application Based on Deep Learning Fusion Assisted Framework

    Ch Avais Hanif1, Muhammad Ali Mughal1, Muhammad Attique Khan2,3,*, Nouf Abdullah Almujally4, Taerang Kim5, Jae-Hyuk Cha5

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 357-374, 2024, DOI:10.32604/cmc.2023.043061

    Abstract The demand for a non-contact biometric approach for candidate identification has grown over the past ten years. Based on the most important biometric application, human gait analysis is a significant research topic in computer vision. Researchers have paid a lot of attention to gait recognition, specifically the identification of people based on their walking patterns, due to its potential to correctly identify people far away. Gait recognition systems have been used in a variety of applications, including security, medical examinations, identity management, and access control. These systems require a complex combination of technical, operational, and… More >

  • Open Access

    ARTICLE

    Stroke Risk Assessment Decision-Making Using a Machine Learning Model: Logistic-AdaBoost

    Congjun Rao1, Mengxi Li1, Tingting Huang2,*, Feiyu Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 699-724, 2024, DOI:10.32604/cmes.2023.044898

    Abstract Stroke is a chronic cerebrovascular disease that carries a high risk. Stroke risk assessment is of great significance in preventing, reversing and reducing the spread and the health hazards caused by stroke. Aiming to objectively predict and identify strokes, this paper proposes a new stroke risk assessment decision-making model named Logistic-AdaBoost (Logistic-AB) based on machine learning. First, the categorical boosting (CatBoost) method is used to perform feature selection for all features of stroke, and 8 main features are selected to form a new index evaluation system to predict the risk of stroke. Second, the borderline… More >

  • Open Access

    ARTICLE

    A Fusion of Residual Blocks and Stack Auto Encoder Features for Stomach Cancer Classification

    Abdul Haseeb1, Muhammad Attique Khan2,*, Majed Alhaisoni3, Ghadah Aldehim4, Leila Jamel4, Usman Tariq5, Taerang Kim6, Jae-Hyuk Cha6

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3895-3920, 2023, DOI:10.32604/cmc.2023.045244

    Abstract Diagnosing gastrointestinal cancer by classical means is a hazardous procedure. Years have witnessed several computerized solutions for stomach disease detection and classification. However, the existing techniques faced challenges, such as irrelevant feature extraction, high similarity among different disease symptoms, and the least-important features from a single source. This paper designed a new deep learning-based architecture based on the fusion of two models, Residual blocks and Auto Encoder. First, the Hyper-Kvasir dataset was employed to evaluate the proposed work. The research selected a pre-trained convolutional neural network (CNN) model and improved it with several residual blocks.… More >

  • Open Access

    ARTICLE

    SCChOA: Hybrid Sine-Cosine Chimp Optimization Algorithm for Feature Selection

    Shanshan Wang1,2,3, Quan Yuan1, Weiwei Tan1, Tengfei Yang1, Liang Zeng1,2,3,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3057-3075, 2023, DOI:10.32604/cmc.2023.044807

    Abstract Feature Selection (FS) is an important problem that involves selecting the most informative subset of features from a dataset to improve classification accuracy. However, due to the high dimensionality and complexity of the dataset, most optimization algorithms for feature selection suffer from a balance issue during the search process. Therefore, the present paper proposes a hybrid Sine-Cosine Chimp Optimization Algorithm (SCChOA) to address the feature selection problem. In this approach, firstly, a multi-cycle iterative strategy is designed to better combine the Sine-Cosine Algorithm (SCA) and the Chimp Optimization Algorithm (ChOA), enabling a more effective search… More >

Displaying 11-20 on page 2 of 237. Per Page