Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (243)
  • Open Access

    ARTICLE

    A Heuristic Radiomics Feature Selection Method Based on Frequency Iteration and Multi-Supervised Training Mode

    Zhigao Zeng1,2, Aoting Tang1,2, Shengqiu Yi1,2, Xinpan Yuan1,2, Yanhui Zhu1,2,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2277-2293, 2024, DOI:10.32604/cmc.2024.047989

    Abstract Radiomics is a non-invasive method for extracting quantitative and higher-dimensional features from medical images for diagnosis. It has received great attention due to its huge application prospects in recent years. We can know that the number of features selected by the existing radiomics feature selection methods is basically about ten. In this paper, a heuristic feature selection method based on frequency iteration and multiple supervised training mode is proposed. Based on the combination between features, it decomposes all features layer by layer to select the optimal features for each layer, then fuses the optimal features More >

  • Open Access

    ARTICLE

    MAIPFE: An Efficient Multimodal Approach Integrating Pre-Emptive Analysis, Personalized Feature Selection, and Explainable AI

    Moshe Dayan Sirapangi1, S. Gopikrishnan1,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2229-2251, 2024, DOI:10.32604/cmc.2024.047438

    Abstract Medical Internet of Things (IoT) devices are becoming more and more common in healthcare. This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of multimodal data to find potential health risks early and help individuals in a personalized way. Existing methods, while useful, have limitations in predictive accuracy, delay, personalization, and user interpretability, requiring a more comprehensive and efficient approach to harness modern medical IoT devices. MAIPFE is a multimodal approach integrating pre-emptive analysis, personalized feature selection, and explainable AI for real-time health… More >

  • Open Access

    ARTICLE

    Ghost Module Based Residual Mixture of Self-Attention and Convolution for Online Signature Verification

    Fangjun Luan1,2,3, Xuewen Mu1,2,3, Shuai Yuan1,2,3,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 695-712, 2024, DOI:10.32604/cmc.2024.048502

    Abstract Online Signature Verification (OSV), as a personal identification technology, is widely used in various industries. However, it faces challenges, such as incomplete feature extraction, low accuracy, and computational heaviness. To address these issues, we propose a novel approach for online signature verification, using a one-dimensional Ghost-ACmix Residual Network (1D-ACGRNet), which is a Ghost-ACmix Residual Network that combines convolution with a self-attention mechanism and performs improvement by using Ghost method. The Ghost-ACmix Residual structure is introduced to leverage both self-attention and convolution mechanisms for capturing global feature information and extracting local information, effectively complementing whole and… More >

  • Open Access

    ARTICLE

    Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection

    Hala AlShamlan*, Halah AlMazrua*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 675-694, 2024, DOI:10.32604/cmc.2024.048146

    Abstract In this study, our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization (GWO) with Harris Hawks Optimization (HHO) for feature selection. The motivation for utilizing GWO and HHO stems from their bio-inspired nature and their demonstrated success in optimization problems. We aim to leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification. We selected leave-one-out cross-validation (LOOCV) to evaluate the performance of both two widely used classifiers, k-nearest neighbors (KNN) and support vector machine… More >

  • Open Access

    ARTICLE

    Applying an Improved Dung Beetle Optimizer Algorithm to Network Traffic Identification

    Qinyue Wu, Hui Xu*, Mengran Liu

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4091-4107, 2024, DOI:10.32604/cmc.2024.048461

    Abstract Network traffic identification is critical for maintaining network security and further meeting various demands of network applications. However, network traffic data typically possesses high dimensionality and complexity, leading to practical problems in traffic identification data analytics. Since the original Dung Beetle Optimizer (DBO) algorithm, Grey Wolf Optimization (GWO) algorithm, Whale Optimization Algorithm (WOA), and Particle Swarm Optimization (PSO) algorithm have the shortcomings of slow convergence and easily fall into the local optimal solution, an Improved Dung Beetle Optimizer (IDBO) algorithm is proposed for network traffic identification. Firstly, the Sobol sequence is utilized to initialize the… More >

  • Open Access

    ARTICLE

    Enhancing PDF Malware Detection through Logistic Model Trees

    Muhammad Binsawad*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3645-3663, 2024, DOI:10.32604/cmc.2024.048183

    Abstract Malware is an ever-present and dynamic threat to networks and computer systems in cybersecurity, and because of its complexity and evasiveness, it is challenging to identify using traditional signature-based detection approaches. The study article discusses the growing danger to cybersecurity that malware hidden in PDF files poses, highlighting the shortcomings of conventional detection techniques and the difficulties presented by adversarial methodologies. The article presents a new method that improves PDF virus detection by using document analysis and a Logistic Model Tree. Using a dataset from the Canadian Institute for Cybersecurity, a comparative analysis is carried… More >

  • Open Access

    ARTICLE

    Improving Thyroid Disorder Diagnosis via Ensemble Stacking and Bidirectional Feature Selection

    Muhammad Armghan Latif1, Zohaib Mushtaq2, Saad Arif3, Sara Rehman4, Muhammad Farrukh Qureshi5, Nagwan Abdel Samee6, Maali Alabdulhafith6,*, Yeong Hyeon Gu7, Mohammed A. Al-masni7

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4225-4241, 2024, DOI:10.32604/cmc.2024.047621

    Abstract Thyroid disorders represent a significant global health challenge with hypothyroidism and hyperthyroidism as two common conditions arising from dysfunction in the thyroid gland. Accurate and timely diagnosis of these disorders is crucial for effective treatment and patient care. This research introduces a comprehensive approach to improve the accuracy of thyroid disorder diagnosis through the integration of ensemble stacking and advanced feature selection techniques. Sequential forward feature selection, sequential backward feature elimination, and bidirectional feature elimination are investigated in this study. In ensemble learning, random forest, adaptive boosting, and bagging classifiers are employed. The effectiveness of… More >

  • Open Access

    ARTICLE

    Nonparametric Statistical Feature Scaling Based Quadratic Regressive Convolution Deep Neural Network for Software Fault Prediction

    Sureka Sivavelu, Venkatesh Palanisamy*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3469-3487, 2024, DOI:10.32604/cmc.2024.047407

    Abstract The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes… More >

  • Open Access

    ARTICLE

    Identification of Software Bugs by Analyzing Natural Language-Based Requirements Using Optimized Deep Learning Features

    Qazi Mazhar ul Haq1, Fahim Arif2,3, Khursheed Aurangzeb4, Noor ul Ain3, Javed Ali Khan5, Saddaf Rubab6, Muhammad Shahid Anwar7,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4379-4397, 2024, DOI:10.32604/cmc.2024.047172

    Abstract Software project outcomes heavily depend on natural language requirements, often causing diverse interpretations and issues like ambiguities and incomplete or faulty requirements. Researchers are exploring machine learning to predict software bugs, but a more precise and general approach is needed. Accurate bug prediction is crucial for software evolution and user training, prompting an investigation into deep and ensemble learning methods. However, these studies are not generalized and efficient when extended to other datasets. Therefore, this paper proposed a hybrid approach combining multiple techniques to explore their effectiveness on bug identification problems. The methods involved feature… More >

  • Open Access

    ARTICLE

    An Artificial Intelligence-Based Framework for Fruits Disease Recognition Using Deep Learning

    Irfan Haider1, Muhammad Attique Khan1,*, Muhammad Nazir1, Taerang Kim2, Jae-Hyuk Cha2

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 529-554, 2024, DOI:10.32604/csse.2023.042080

    Abstract Fruit infections have an impact on both the yield and the quality of the crop. As a result, an automated recognition system for fruit leaf diseases is important. In artificial intelligence (AI) applications, especially in agriculture, deep learning shows promising disease detection and classification results. The recent AI-based techniques have a few challenges for fruit disease recognition, such as low-resolution images, small datasets for learning models, and irrelevant feature extraction. This work proposed a new fruit leaf leaf leaf disease recognition framework using deep learning features and improved pathfinder optimization. Three fruit types have been… More >

Displaying 11-20 on page 2 of 243. Per Page