Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (280)
  • Open Access

    ARTICLE

    A Simple and Efficient Structural Topology Optimization Implementation Using Open-Source Software for All Steps of the Algorithm: Modeling, Sensitivity Analysis and Optimization

    Rafael Marin Ferro1,2,*, Renato Pavanello2

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1371-1397, 2023, DOI:10.32604/cmes.2023.026043

    Abstract This work analyzes the implementation of a continuous method of structural topology optimization (STO) using open-source software for all stages of the topology optimization problem: modeling, sensitivity analysis and optimization. Its implementation involves three main components: numerical analysis using the Finite Element Method (FEM), sensitivity analysis using an Adjoint method and an optimization solver. In order to allow the automated numerical solution of Partial Differential Equations (PDEs) and perform a sensitivity analysis, FEniCS and Dolfin Adjoint software are used as tools, which are open-source code. For the optimization process, Ipopt (Interior Point OPTimizer) is used, which is a software package… More >

  • Open Access

    ARTICLE

    Parallel Iterative FEM Solver with Initial Guess for Frequency Domain Electromagnetic Analysis

    Woochan Lee1, Woobin Park1, Jaeyoung Park2, Young-Joon Kim3, Moonseong Kim4,*

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1585-1602, 2023, DOI:10.32604/iasc.2023.033112

    Abstract The finite element method is a key player in computational electromagnetics for designing RF (Radio Frequency) components such as waveguides. The frequency-domain analysis is fundamental to identify the characteristics of the components. For the conventional frequency-domain electromagnetic analysis using FEM (Finite Element Method), the system matrix is complex-numbered as well as indefinite. The iterative solvers can be faster than the direct solver when the solver convergence is guaranteed and done in a few steps. However, such complex-numbered and indefinite systems are hard to exploit the merit of the iterative solver. It is also hard to benefit from matrix factorization techniques… More >

  • Open Access

    ARTICLE

    Finite Element Simulation of Radial Tire Building and Shaping Processes Using an Elasto-Viscoplastic Model

    Yinlong Wang1, Zhao Li2, Ziran Li1,*, Yang Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1187-1208, 2023, DOI:10.32604/cmes.2022.022596

    Abstract The comprehensive tire building and shaping processes are investigated through the finite element method (FEM) in this article. The mechanical properties of the uncured rubber from different tire components are investigated through cyclic loading-unloading experiments under different strain rates. Based on the experiments, an elasto-viscoplastic constitutive model is adopted to describe the mechanical behaviors of the uncured rubber. The distinct mechanical properties, including the stress level, hysteresis and residual strain, of the uncured rubber can all be well characterized. The whole tire building process (including component winding, rubber bladder inflation, component stitching and carcass band folding-back) and the shaping process… More >

  • Open Access

    ARTICLE

    Novel Analysis of Two Kinds Hybrid Models in Ferro Martial Inserting Variable Lorentz Force Past a Heated Disk: An Implementation of Finite Element Method

    Enran Hou1, Umar Nazir2, Samaira Naz3, Muhammad Sohail2,4,*, Muhammad Nadeem5, Jung Rye Lee6, Choonkil Park7,*, Ahmed M. Galal8,9

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1393-1411, 2023, DOI:10.32604/cmes.2022.022500

    Abstract In this article, the rheology of Ferro-fluid over an axisymmetric heated disc with a variable magnetic field by considering the dispersion of hybrid nanoparticles is considered. The flow is assumed to be produced by the stretching of a rotating heated disc. The contribution of variable thermophysical properties is taken to explore the momentum, mass and thermal transportation. The concept of boundary layer mechanism is engaged to reduce the complex problem into a simpler one in the form of coupled partial differential equations system. The complex coupled PDEs are converted into highly nonlinear coupled ordinary differential equations system (ODEs) and the… More >

  • Open Access

    ARTICLE

    Modelling of Wideband Concentric Ring Frequency Selective Surface for 5G Devices

    Ankush Kapoor1, Pradeep Kumar2,*, Ranjan Mishra3

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 341-361, 2023, DOI:10.32604/cmc.2023.028874

    Abstract Frequency selective surfaces (FSSs) play an important role in wireless systems as these can be used as filters, in isolating the unwanted radiation, in microstrip patch antennas for improving the performance of these antennas and in other 5G applications. The analysis and design of the double concentric ring frequency selective surface (DCRFSS) is presented in this research. In the sub-6 GHz 5G FR1 spectrum, a computational synthesis technique for creating DCRFSS based spatial filters is proposed. The analytical tools presented in this study can be used to gain a better understanding of filtering processes and for constructing the spatial filters.… More >

  • Open Access

    ARTICLE

    Thermal Analysis of Turbine Blades with Thermal Barrier Coatings Using Virtual Wall Thickness Method

    Linchuan Liu1, Jian Wu2, Zhongwei Hu2, Xiaochao Jin1,*, Pin Lu1, Tao Zhang2, Xueling Fan1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 1219-1236, 2023, DOI:10.32604/cmes.2022.022221

    Abstract A virtual wall thickness method is developed to simulate the temperature field of turbine blades with thermal barrier coatings (TBCs), to simplify the modeling process and improve the calculation efficiency. The results show that the virtual wall thickness method can improve the mesh quality by 20%, reduce the number of meshes by 76.7% and save the calculation time by 35.5%, compared with the traditional real wall thickness method. The average calculation error of the two methods is between 0.21% and 0.93%. Furthermore, the temperature at the blade leading edge is the highest and the average temperature of the blade pressure… More >

  • Open Access

    ARTICLE

    Integrity and Failure Analysis of Cement Sheath Subjected to Coalbed Methane Fracturing

    Lingyun Zhao1,2, Heng Yang3,4,*, Yuanlong Wei1,2,*, Yuhuan Bu3,4, Shaorui Jing3,4, Peiming Zhou1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.2, pp. 329-344, 2023, DOI:10.32604/fdmp.2022.020216

    Abstract Perforation and fracturing are typically associated with the development of coalbed methane wells. As the cement sheath is prone to failure during this process, in this work, the effects of the casing pressure, elastic modulus of the cement, elastic modulus of the formation, and casing eccentricity on the resulting stresses are analyzed in the frame of a finite element method. Subsequently, sensitivity response curves of the cement sheath stress are plotted by normalizing all factors. The results show that the maximum circumferential stress and Mises stress of the cement sheath increase with the casing internal pressure, elastic modulus of the… More > Graphic Abstract

    Integrity and Failure Analysis of Cement Sheath Subjected to Coalbed Methane Fracturing

  • Open Access

    ARTICLE

    Tactile Response Characterization of a Dynamic System Using Craig-Bampton Method

    S. Pradeepkumar*, P. Nagaraj

    Sound & Vibration, Vol.56, No.3, pp. 221-233, 2022, DOI:10.32604/sv.2022.014889

    Abstract Vibrational characteristics in small horizontal axis wind turbine system are presented in this study with a system concept called tactile response and substructuring. The main focus is on managing the dynamic properties like vibration, noise, and harshness that occur during the operational mode. Tactile response is defined as the response of subsystem which is induced when a human body touches a vibrating system. Sub structuring is a computational method used to reduce the dynamic behavior of a large complex system with a smaller number of degrees of freedom without disturbing the mesh size of the model. Sub structuring has the… More >

  • Open Access

    ARTICLE

    Numerical Modelling of Drying Induced Cracks in Wood Discs Using the Extended Finite Element Method

    Zongying Fu1, Yongdong Zhou1, Tingguo Yan2, Yun Lu1,*

    Journal of Renewable Materials, Vol.11, No.1, pp. 93-102, 2023, DOI:10.32604/jrm.2023.021808

    Abstract Drying crack is a common phenomenon occurring during moisture discharge from wood, reducing efficient wood utilization. Drying crack is primarily caused by drying stress, and the reasonable methods for determining drying stress are sparse. In this study, the initiation and propagation of cracks during wood discs drying were simulated using the extended finite element method (XFEM). The distribution of drying stress and displacement was analyzed at different crack conditions based on the simulation results. This study aimed to solve the problem of the limitation of drying stress testing methods and provide a new idea for the study of wood drying… More >

  • Open Access

    PROCEEDINGS

    Transient Analysis of Micro/Nano Plates by Moving Finite Element Method

    Ladislav Sator1,*, Vladimir Sladek1, Jan Sladek1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.24, No.1, pp. 1-1, 2022, DOI:10.32604/icces.2022.08679

    Abstract The paper deals with transient analysis of homogeneous as well as FGM (functionally graded material) thin micro/nano plates subjected to transversal dynamic loading. within the highergrade continuum theory of elasticity. The microscopic structure of material is reflected in this higher-grade continuum theory via one material coefficient called the micro-length scale parameter. Furthermore the material can be composed of two micro-constituents what is included in the employed continuum model by functional gradation of the Young’s modulus through the plate thickness with assuming power-law dependence of volume fractions of micro-constituents on the transversal coordinate. The high order derivatives of field variables are… More >

Displaying 21-30 on page 3 of 280. Per Page