Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (70)
  • Open Access


    Research on Flexible Job Shop Scheduling Based on Improved Two-Layer Optimization Algorithm

    Qinhui Liu, Laizheng Zhu, Zhijie Gao, Jilong Wang, Jiang Li*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 811-843, 2024, DOI:10.32604/cmc.2023.046040

    Abstract To improve the productivity, the resource utilization and reduce the production cost of flexible job shops, this paper designs an improved two-layer optimization algorithm for the dual-resource scheduling optimization problem of flexible job shop considering workpiece batching. Firstly, a mathematical model is established to minimize the maximum completion time. Secondly, an improved two-layer optimization algorithm is designed: the outer layer algorithm uses an improved PSO (Particle Swarm Optimization) to solve the workpiece batching problem, and the inner layer algorithm uses an improved GA (Genetic Algorithm) to solve the dual-resource scheduling problem. Then, a rescheduling method is designed to solve the… More >

  • Open Access


    Flexible Load Participation in Peaking Shaving and Valley Filling Based on Dynamic Price Incentives

    Lifeng Wang1, Jing Yu2,*, Wenlu Ji1

    Energy Engineering, Vol.121, No.2, pp. 523-540, 2024, DOI:10.32604/ee.2023.041881

    Abstract Considering the widening of the peak-valley difference in the power grid and the difficulty of the existing fixed time-of-use electricity price mechanism in meeting the energy demand of heterogeneous users at various moments or motivating users, the design of a reasonable dynamic pricing mechanism to actively engage users in demand response becomes imperative for power grid companies. For this purpose, a power grid-flexible load bilevel model is constructed based on dynamic pricing, where the leader is the dispatching center and the lower-level flexible load acts as the follower. Initially, an upper-level day-ahead dispatching model for the power grid is established,… More >

  • Open Access


    Flexible Global Aggregation and Dynamic Client Selection for Federated Learning in Internet of Vehicles

    Tariq Qayyum1, Zouheir Trabelsi1,*, Asadullah Tariq1, Muhammad Ali2, Kadhim Hayawi3, Irfan Ud Din4

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1739-1757, 2023, DOI:10.32604/cmc.2023.043684

    Abstract Federated Learning (FL) enables collaborative and privacy-preserving training of machine learning models within the Internet of Vehicles (IoV) realm. While FL effectively tackles privacy concerns, it also imposes significant resource requirements. In traditional FL, trained models are transmitted to a central server for global aggregation, typically in the cloud. This approach often leads to network congestion and bandwidth limitations when numerous devices communicate with the same server. The need for Flexible Global Aggregation and Dynamic Client Selection in FL for the IoV arises from the inherent characteristics of IoV environments. These include diverse and distributed data sources, varying data quality,… More >

  • Open Access


    The Numerical Simulation of Nanofluid Flow in Complex Channels with Flexible Wall

    Amal A. Harbood*, Hameed K. Hamzah, Hatem H. Obeid

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 293-315, 2023, DOI:10.32604/fhmt.2023.01518

    Abstract The current work seeks to examine numerical heat transfer by using a complicated channel with a trapezoid shape hanging in the channel. This channel demonstrates two-dimensional laminar flow, forced convective flow, and incompressible flow. To explore the behavior of heat transfer in complex channels, several parameters, such as the constant Prandtl number (Pr = 6.9), volume fraction (ϕ) equal to (0.02 to 0.04), Cauchy number (Ca) equal to (10−4 to 10−8), and Reynolds number equal to (60 to 160) were utilized. At the complex channel, different elastic walls are used in different locations, with case A being devoid of an… More >

  • Open Access


    Operation Control Method of Relay Protection in Flexible DC Distribution Network Compatible with Distributed Power Supply

    Zihan Qi*

    Energy Engineering, Vol.120, No.11, pp. 2547-2563, 2023, DOI:10.32604/ee.2023.027045

    Abstract A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection, leading to poor performance. The method combines a fault-tolerant fault location method based on long-term and short-term memory networks to accurately locate the fault section. Then, an operation control method for relay protection based on adaptive weight and whale optimization algorithm (WOA) is used to construct an objective function considering the shortest relay protection action time and the smallest impulse current. The adaptive weight and WOA are employed to obtain… More >

  • Open Access


    Nonlinear Dynamics of a Flexible Tether-Net System for Space Debris Capture

    Weicheng Huang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09017

    Abstract Here, a flexible tether-net system is applied to capture the space debris and a numerical framework is established to explore its nonlinear dynamic behaviors, which comprises four principal phases: folding, spreading, contacting, and closing [1]. Based on the discretization of the whole structure into multiple nodes and connected edges, elastic force vectors and associated Jacobian matrix are derived analytically to solve a series of equations of motion. With a fully implicit method applied to analyze the nonlinear dynamics of a slender rod network, the involved mechanical responses are investigated numerically accounting for the interactions. Contact between the deformable net and… More >

  • Open Access


    Research on Optimization of Dual-Resource Batch Scheduling in Flexible Job Shop

    Qinhui Liu, Zhijie Gao, Jiang Li*, Shuo Li, Laizheng Zhu

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2503-2530, 2023, DOI:10.32604/cmc.2023.040505

    Abstract With the rapid development of intelligent manufacturing and the changes in market demand, the current manufacturing industry presents the characteristics of multi-varieties, small batches, customization, and a short production cycle, with the whole production process having certain flexibility. In this paper, a mathematical model is established with the minimum production cycle as the optimization objective for the dual-resource batch scheduling of the flexible job shop, and an improved nested optimization algorithm is designed to solve the problem. The outer layer batch optimization problem is solved by the improved simulated annealing algorithm. The inner double resource scheduling problem is solved by… More >

  • Open Access


    Flexible Biofoams Based on Furanics and Fatty Acids Esterified Tannin

    Elham Azadeh1, Ummi Hani Abdullah2,3, Christine Gerardin1,*, Antonio Pizzi1,*, Philippe Gerardin1, Cesar Segovia4

    Journal of Renewable Materials, Vol.11, No.10, pp. 3625-3645, 2023, DOI:10.32604/jrm.2023.030373

    Abstract Water repellant, flexible biofoams using tannin esterified with various fatty acid chains, namely lauric, palmitic and oleic acids, by reaction with lauryl chloride, palmitoyl chloride, and oleyl chloride were developed and their characteristics compared with the equivalently esterified rigid biofoams. Glycerol, while initially added to control the reaction temperature, was used as a plasticizer yielding flexible biofoams presenting the same water repellant character that the equivalent rigid foams. Acetaldehyde was used as the cross-linking agent instead of formaldehyde, as it showed a better performance with the esterified tannin. The compression results showed a significant decrease of the Modulus of Elasticity… More >

  • Open Access


    A Novel Collaborative Evolutionary Algorithm with Two-Population for Multi-Objective Flexible Job Shop Scheduling

    Cuiyu Wang, Xinyu Li, Yiping Gao*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1849-1870, 2023, DOI:10.32604/cmes.2023.028098

    Abstract Job shop scheduling (JS) is an important technology for modern manufacturing. Flexible job shop scheduling (FJS) is critical in JS, and it has been widely employed in many industries, including aerospace and energy. FJS enables any machine from a certain set to handle an operation, and this is an NP-hard problem. Furthermore, due to the requirements in real-world cases, multi-objective FJS is increasingly widespread, thus increasing the challenge of solving the FJS problems. As a result, it is necessary to develop a novel method to address this challenge. To achieve this goal, a novel collaborative evolutionary algorithm with two-population based… More >

  • Open Access


    Multitarget Flexible Grasping Detection Method for Robots in Unstructured Environments

    Qingsong Fan, Qijie Rao, Haisong Huang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1825-1848, 2023, DOI:10.32604/cmes.2023.028369

    Abstract In present-day industrial settings, where robot arms perform tasks in an unstructured environment, there may exist numerous objects of various shapes scattered in random positions, making it challenging for a robot arm to precisely attain the ideal pose to grasp the object. To solve this problem, a multistage robotic arm flexible grasp detection method based on deep learning is proposed. This method first improves the Faster RCNN target detection model, which significantly improves the detection ability of the model for multiscale grasped objects in unstructured scenes. Then, a Squeeze-and-Excitation module is introduced to design a multitarget grasping pose generation network… More >

Displaying 1-10 on page 1 of 70. Per Page