Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,380)
  • Open Access

    ARTICLE

    Characterization of Pore Structure and Simulation of Pore-Scale Flow in Tight Sandstone Reservoirs

    Min Feng*, Long Wang, Lei Sun, Bo Yang, Wei Wang, Jianning Luo, Yan Wang, Ping Liu

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.3, pp. 573-587, 2025, DOI:10.32604/fdmp.2024.056421 - 01 April 2025

    Abstract This study sheds light on how pore structure characteristics and varying dynamic pressure conditions influence the permeability of tight sandstone reservoirs, with a particular focus on the Paleozoic reservoirs in the Qingshimao Gas Field. Using CT scans of natural core samples, a three-dimensional digital core was constructed. The maximum ball method was applied to extract a related pore network model, and the pore structure characteristics of the core samples, such as pore radius, throat radius, pore volume, and coordination number, were quantitatively evaluated. The analysis revealed a normally distributed pore radius, suggesting a high degree… More >

  • Open Access

    ARTICLE

    Classifying Network Flows through a Multi-Modal 1D CNN Approach Using Unified Traffic Representations

    Ravi Veerabhadrappa*, Poornima Athikatte Sampigerayappa

    Computer Systems Science and Engineering, Vol.49, pp. 333-351, 2025, DOI:10.32604/csse.2025.061285 - 19 March 2025

    Abstract In recent years, the analysis of encrypted network traffic has gained momentum due to the widespread use of Transport Layer Security and Quick UDP Internet Connections protocols, which complicate and prolong the analysis process. Classification models face challenges in understanding and classifying unknown traffic because of issues related to interpret ability and the representation of traffic data. To tackle these complexities, multi-modal representation learning can be employed to extract meaningful features and represent them in a lower-dimensional latent space. Recently, auto-encoder-based multi-modal representation techniques have shown superior performance in representing network traffic. By combining the… More >

  • Open Access

    ARTICLE

    Unknown DDoS Attack Detection with Sliced Iterative Normalizing Flows Technique

    Chin-Shiuh Shieh1, Thanh-Lam Nguyen1, Thanh-Tuan Nguyen2,*, Mong-Fong Horng1,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4881-4912, 2025, DOI:10.32604/cmc.2025.061001 - 06 March 2025

    Abstract DDoS attacks represent one of the most pervasive and evolving threats in cybersecurity, capable of crippling critical infrastructures and disrupting services globally. As networks continue to expand and threats become more sophisticated, there is an urgent need for Intrusion Detection Systems (IDS) capable of handling these challenges effectively. Traditional IDS models frequently have difficulties in detecting new or changing attack patterns since they heavily depend on existing characteristics. This paper presents a novel approach for detecting unknown Distributed Denial of Service (DDoS) attacks by integrating Sliced Iterative Normalizing Flows (SINF) into IDS. SINF utilizes the… More >

  • Open Access

    ARTICLE

    Numerical Analysis of the Influence of Liquid Cooling Flow Space on the Assessment of Thermal Management of PEMFC

    Abubakar Unguwanrimi Yakubu1,2,4, Jiahao Zhao1, Qi Jiang1, Xuanhong Ye1, Junyi Liu1, Qinglong Yu1, Shusheng Xiong1,3,4,*

    Energy Engineering, Vol.122, No.3, pp. 1025-1051, 2025, DOI:10.32604/ee.2025.057680 - 07 March 2025

    Abstract This study uses numerical simulations of liquid cooling flow fields to investigate polymer exchange membrane fuel cell (PEMFC) thermal control. The research shows that the optimum cooling channel design significantly reduces the fuel cell’s temperature differential, improving overall efficiency. Specifically, the simulations show a reduction in the maximum temperature by up to 15% compared to traditional designs. Additionally, according to analysis, the Nusselt number rises by 20% with the implementation of serpentine flow patterns, leading to enhanced heat transfer rates. The findings demonstrate that effective cooling strategies can lead to a 10% increase in fuel More >

  • Open Access

    ARTICLE

    Correlation between Floral Color Attributes and Volatile Components among 10 Fragrant Phalaenopsis Cultivars

    Xiuyun Liu1, Jixia Sun2, Feng Ming3, Minxiao Liu2,*, Xinyu Wang2, Yingjie Zhang2,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.2, pp. 379-391, 2025, DOI:10.32604/phyton.2025.060726 - 06 March 2025

    Abstract To study the main aroma components of Phalaenopsis orchid and their relationship with colors, 10 fragrant cultivars with different colors, like pink, rose, yellow, and purple, were used as samples in this experiment. Headspace-gas chromatography-mass spectrometry was used to determine the main components of floral fragrance and analyze the correlation between floral color and fragrance. The results showed that the main aroma components of the 10 fragrant cultivars of Phalaenopsis were alcohols, alkenes, esters, and benzene ring compounds, and the main aroma components of different cultivars were diverse. The main aroma components of yellow fragrant flowers… More >

  • Open Access

    ARTICLE

    Enhanced Boiling Heat Transfer in Water Pools with Perforated Copper Beads and Sodium Dodecyl Sulfate Surfactant

    Pengcheng Cai1,2, Teng Li3, Jianxin Xu1,2,*, Xiaobo Li3, Zhiqiang Li1,2, Zhiwen Xu3, Hua Wang1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.2, pp. 325-349, 2025, DOI:10.32604/fdmp.2024.057496 - 06 March 2025

    Abstract In modern engineering, enhancing boiling heat transfer efficiency is crucial for optimizing energy use and several industrial processes involving different types of materials. This study explores the enhancement of pool boiling heat transfer potentially induced by combining perforated copper particles on a heated surface with a sodium dodecyl sulfate (SDS) surfactant in saturated deionized water. Experiments were conducted at standard atmospheric pressure, with heat flux ranging from 20 to 100 kW/m2. The heating surface, positioned below the layer of freely moving copper beads, allowed the particle layer to shift due to liquid convection and steam More > Graphic Abstract

    Enhanced Boiling Heat Transfer in Water Pools with Perforated Copper Beads and Sodium Dodecyl Sulfate Surfactant

  • Open Access

    ARTICLE

    Steady-State Solution of MHD Flow with Induced Magnetic Field

    Saykat Poddar1, Jui Saha1, Badhan Neogi1, Mohammad Sanjeed Hasan1, Muhammad Minarul Islam1, Giulio Lorenzini2,*, Md. Mahmud Alam3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.2, pp. 233-252, 2025, DOI:10.32604/fdmp.2025.056131 - 06 March 2025

    Abstract This study presents a numerical analysis of the steady-state solution for transient magnetohydrodynamic (MHD) dissipative and radiative fluid flow, incorporating an induced magnetic field (IMF) and considering a relatively high concentration of foreign mass (accounting for Soret and Dufour effects) over a vertically oriented semi-infinite plate. The governing equations were normalized using boundary layer (BL) approximations. The resulting nonlinear system of partial differential equations (PDEs) was discretized and solved using an efficient explicit finite difference method (FDM). Numerical simulations were conducted using MATLAB R2015a, and the developed numerical code was verified through comparison with another… More >

  • Open Access

    ARTICLE

    Viscous Flow Activation Energy and Short-Term Aging Resistance of SBS-Modified Asphalt Enhanced by PPA Oil-Grinding Activated MoS2

    Shun Chen1,2,3, Yingjie Wang1, Xingyang He1,2,3,*, Ying Su1,2,3, Yingyuan Pan1, Yimin Cao1, Wentian Wang1, Chao Yang1,2,3, Bo Jiang1,2,3, Shaolin Zhang4

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.2, pp. 387-404, 2025, DOI:10.32604/fdmp.2024.055697 - 06 March 2025

    Abstract Styrene-butadiene-styrene (SBS) modified asphalt (SA) has long found effective applications in road construction materials. When combined with fillers, SBS-modified asphalt has demonstrated promising resistance to fatigue cracking caused by temperature fluctuations and aging. In this study, molybdenum disulfide (MoS2) and polyphosphoric acid (PPA) were ground in naphthenic oil (NO) and subjected to mechanical activation to create PPA-modified MoS2, referred to as OMS-PPA. By blending various ratios of OMS-PPA with SBS-modified asphalt, composite-modified asphalts were successfully developed to enhance their overall properties. To assess the mechanical characteristics and stability of these modified asphalts, various methods were employed,… More > Graphic Abstract

    Viscous Flow Activation Energy and Short-Term Aging Resistance of SBS-Modified Asphalt Enhanced by PPA Oil-Grinding Activated MoS<sub>2</sub>

  • Open Access

    ARTICLE

    Thermal Performance of Entropy-Optimized Tri-Hybrid Nanofluid Flow within the Context of Two Distinct Non-Newtonian Models: Application of Solar-Powered Residential Buildings

    Ahmed Mohamed Galal1,2, Adebowale Martins Obalalu3, Akintayo Oladimeji Akindele4, Umair Khan5,6, Abdulazeez Adebayo Usman7, Olalekan Adebayo Olayemi8, Najiyah Safwa Khashi’ie9,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 3089-3113, 2025, DOI:10.32604/cmes.2025.061296 - 03 March 2025

    Abstract The need for efficient thermal energy systems has gained significant attention due to the growing global concern about renewable energy resources, particularly in residential buildings. One of the biggest challenges in this area is capturing and converting solar energy at maximum efficiency. This requires the use of strong materials and advanced fluids to enhance conversion efficiency while minimizing energy losses. Despite extensive research on thermal energy systems, there remains a limited understanding of how the combined effects of thermal radiation, irreversibility processes, and advanced heat flux models contribute to optimizing solar power performance in residential… More > Graphic Abstract

    Thermal Performance of Entropy-Optimized Tri-Hybrid Nanofluid Flow within the Context of Two Distinct Non-Newtonian Models: Application of Solar-Powered Residential Buildings

  • Open Access

    ARTICLE

    Thermal Assessment of a Differentially Heated Nanofluid-Filled Cavity Containing an Obstacle

    Abdelilah Makaoui1, El Bachir Lahmer1,*, Jaouad Benhamou1,2, Mohammed Amine Moussaoui1, Ahmed Mezrhab1

    Frontiers in Heat and Mass Transfer, Vol.23, No.1, pp. 207-230, 2025, DOI:10.32604/fhmt.2024.060166 - 26 February 2025

    Abstract This study focuses on numerically investigating thermal behavior within a differentially heated cavity filled with nanofluid with and without obstacles. Numerical comparison with previous studies proves the consistency and efficacy of the lattice Boltzmann method associated with a single relaxation time and its possibility of studying the nanofluid and heat transfer with high accuracy. Key parameters, including nanoparticle type and concentration, Rayleigh number, fluid basis, and obstacle position and dimension, were examined to identify optimal conditions for enhancing heat transfer quality. Principal findings indicated that increasing the Rayleigh number boosts buoyancy forces and alters vortex More > Graphic Abstract

    Thermal Assessment of a Differentially Heated Nanofluid-Filled Cavity Containing an Obstacle

Displaying 21-30 on page 3 of 1380. Per Page