Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,235)
  • Open Access

    ARTICLE

    Predicting Traffic Flow Using Dynamic Spatial-Temporal Graph Convolution Networks

    Yunchang Liu1,*, Fei Wan1, Chengwu Liang2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4343-4361, 2024, DOI:10.32604/cmc.2024.047211

    Abstract Traffic flow prediction plays a key role in the construction of intelligent transportation system. However, due to its complex spatio-temporal dependence and its uncertainty, the research becomes very challenging. Most of the existing studies are based on graph neural networks that model traffic flow graphs and try to use fixed graph structure to deal with the relationship between nodes. However, due to the time-varying spatial correlation of the traffic network, there is no fixed node relationship, and these methods cannot effectively integrate the temporal and spatial features. This paper proposes a novel temporal-spatial dynamic graph convolutional network (TSADGCN). The dynamic… More >

  • Open Access

    ARTICLE

    Cross-Diffusion Effects on an MHD Williamson Nanofluid Flow Past a Nonlinear Stretching Sheet Immersed in a Permeable Medium

    R. Madan Kumar1, R. Srinivasa Raju2, F. Mebarek-Oudina3,*, M. Anil Kumar4, V. K. Narla2

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 15-34, 2024, DOI:10.32604/fhmt.2024.048045

    Abstract The primary aim of this research endeavor is to examine the characteristics of magnetohydrodynamic Williamson nanofluid flow past a nonlinear stretching surface that is immersed in a permeable medium. In the current analysis, the impacts of Soret and Dufour (cross-diffusion effects) have been attentively taken into consideration. Using appropriate similarity variable transformations, the governing nonlinear partial differential equations were altered into nonlinear ordinary differential equations and then solved numerically using the Runge Kutta Fehlberg-45 method along with the shooting technique. Numerical simulations were then perceived to show the consequence of various physical parameters on the plots of velocity, temperature, and… More > Graphic Abstract

    Cross-Diffusion Effects on an MHD Williamson Nanofluid Flow Past a Nonlinear Stretching Sheet Immersed in a Permeable Medium

  • Open Access

    ARTICLE

    Nanofluid Flow across a Moving Plate under Blasius-Rayleigh-Stokes (BRS) Variable Transport Fluid Characteristics

    Hanumesh Vaidya1, Fateh Mebarek-Oudina2,*, K. V. Prasad1, Rajashekhar Choudhari3, Neelufer Z. Basha1, Sangeeta Kalal1

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 65-78, 2024, DOI:10.32604/fhmt.2024.047879

    Abstract This investigation aims to analyze the effects of heat transport characteristics in the unsteady flow of nanofluids over a moving plate caused by a moving slot factor. The BRS variable is utilized for the purpose of analyzing these characteristics. The process of mathematical computation involves converting the governing partial differential equations into ordinary differential equations that have suitable similarity components. The Keller-Box technique is employed to solve the ordinary differential equations (ODEs) and derive the corresponding mathematical outcomes. Figures and tables present the relationship between growth characteristics and various parameters such as temperature, velocity, skin friction coefficient, concentration, Sherwood number,… More > Graphic Abstract

    Nanofluid Flow across a Moving Plate under Blasius-Rayleigh-Stokes (BRS) Variable Transport Fluid Characteristics

  • Open Access

    ARTICLE

    Flow Patterns and Heat Transfer Characteristics of a Polymer Pulsating Heat Pipe Filled with Hydrofluoroether

    Nobuhito Nagasato1, Zhengyuan Pei1, Yasushi Koito2,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 49-63, 2024, DOI:10.32604/fhmt.2024.047502

    Abstract Visualization experiments were conducted to clarify the operational characteristics of a polymer pulsating heat pipe (PHP). Hydrofluoroether (HFE)-7100 was used as a working fluid, and its filling ratio was 50% of the entire PHP channel. A semi-transparent PHP was fabricated using a transparent polycarbonate sheet and a plastic 3D printer, and the movements of liquid slugs and vapor plugs of the working fluid were captured with a high-speed camera. The video images were then analyzed to obtain the flow patterns in the PHP. The heat transfer characteristics of the PHP were discussed based on the flow patterns and temperature distributions… More >

  • Open Access

    ARTICLE

    Comparative Numerical Analysis of Heat and Mass Transfer Characteristics in Sisko Al2O3-Eg and TiO2-Eg Fluids on a Stretched Surface

    K. Jyothi1, Abhishek Dasore2,3,*, R. Ganapati4, Sk. Mohammad Shareef5, Ali J. Chamkha6, V. Raghavendra Prasad7

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 79-105, 2024, DOI:10.32604/fhmt.2024.046891

    Abstract In the current research, a thorough examination unfolds concerning the attributes of magnetohydrodynamic (MHD) boundary layer flow and heat transfer inherent to nanoliquids derived from Sisko Al2O3-Eg and TiO2-Eg compositions. Such nanoliquids are subjected to an extending surface. Consideration is duly given to slip boundary conditions, as well as the effects stemming from variable viscosity and variable thermal conductivity. The analytical approach applied involves the application of suitable similarity transformations. These conversions serve to transform the initial set of complex nonlinear partial differential equations into a more manageable assembly of ordinary differential equations. Through the utilization of the FEM, these… More > Graphic Abstract

    Comparative Numerical Analysis of Heat and Mass Transfer Characteristics in Sisko Al<sub>2</sub>O<sub>3</sub>-Eg and TiO<sub>2</sub>-Eg Fluids on a Stretched Surface

  • Open Access

    ARTICLE

    Effects of Viscous Dissipation and Periodic Heat Flux on MHD Free Convection Channel Flow with Heat Generation

    Mustafa Abdullah*

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 141-156, 2024, DOI:10.32604/fhmt.2024.046788

    Abstract This study investigates the influence of periodic heat flux and viscous dissipation on magnetohydrodynamic (MHD) flow through a vertical channel with heat generation. A theoretical approach is employed. The channel is exposed to a perpendicular magnetic field, while one side experiences a periodic heat flow, and the other side undergoes a periodic temperature variation. Numerical solutions for the governing partial differential equations are obtained using a finite difference approach, complemented by an eigenfunction expansion method for analytical solutions. Visualizations and discussions illustrate how different variables affect the flow velocity and temperature fields. This offers comprehensive insights into MHD flow behavior… More >

  • Open Access

    ARTICLE

    Thermal Radiation Effects on 2D Stagnation Point Flow of a Heated Stretchable Sheet with Variable Viscosity and MHD in a Porous Medium

    Muhammad Abaid Ur Rehman1,*, Muhammad Asif Farooq1, Ahmed M. Hassan2

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 263-286, 2024, DOI:10.32604/fhmt.2023.044587

    Abstract This paper proposes a mathematical modeling approach to examine the two-dimensional flow stagnates at over a heated stretchable sheet in a porous medium influenced by nonlinear thermal radiation, variable viscosity, and MHD. This study’s main purpose is to examine how thermal radiation and varying viscosity affect fluid flow motion. Additionally, we consider the convective boundary conditions and incorporate the gyrotactic microorganisms equation, which describes microorganism behavior in response to fluid flow. The partial differential equations (PDEs) that represent the conservation equations for mass, momentum, energy, and microorganisms are then converted into a system of coupled ordinary differential equations (ODEs) through… More >

  • Open Access

    ARTICLE

    Experimental and Numerical Study on the Transient Flow Behavior in Gasoline Refueling System

    Chenlin Zhu1, Yan Zhao1, Zhitao Jiang1, Jiafeng Xie3, Lifang Zeng2,*, Lijuan Qian1,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 107-127, 2024, DOI:10.32604/fhmt.2023.044433

    Abstract Efficient and secure refueling within the vehicle refueling systems exhibits a close correlation with the issues concerning fuel backflow and gasoline evaporation. This paper investigates the transient flow behavior in fuel hose refilling and simplified tank fuel replenishment using the volume of fluid method. The numerical simulation is validated with the simplified hose refilling experiment and the evaporation simulation of Stefan tube. The effects of injection flow rate and injection directions have been discussed in the fuel hose refilling part. For both the experiment and simulation, the pressure at the end of the refueling pipe in the lower located nozzle… More >

  • Open Access

    ARTICLE

    Numerical Study on 3D MHD Darcy-Forchheimer Flow Caused by Gyrotactic Microorganisms of the Bio-Convective Casson Nanofluid across a Stretched Sheet

    S. H. Elhag*

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 377-395, 2024, DOI:10.32604/fhmt.2023.044428

    Abstract A review of the literature revealed that nanofluids are more effective in transferring heat than conventional fluids. Since there are significant gaps in the illumination of existing methods for enhancing heat transmission in nanomaterials, a thorough investigation of the previously outlined models is essential. The goal of the ongoing study is to determine whether the microscopic gold particles that are involved in mass and heat transmission drift in freely. The current study examines heat and mass transfer on 3D MHD Darcy–Forchheimer flow of Casson nanofluid-induced bio-convection past a stretched sheet. The inclusion of the nanoparticles is a result of their… More >

  • Open Access

    ARTICLE

    HEAT FLOW IN THIN FILMS VIA SURFACE PHONON-POLARITONS

    Dye-Zone A. Chen, Gang Chen*

    Frontiers in Heat and Mass Transfer, Vol.1, No.2, pp. 1-6, 2010, DOI:10.5098/hmt.v1.2.3005

    Abstract We present a calculation of the thermally generated electromagnetic flux propagating along the in-plane direction of a polar, thin film. The approach is based on fluctuational electrodynamics and the fluctuation-dissipation theorem. We find that for silicon carbide films between 5 nm and 100 nm thick, the thinner films transport more in-plane flux due to the long propagation length of the anti-symmetric surface phonon-polariton mode. Comparison of results obtained from the fluctuation-dissipation approach and the kinetic theory approach shows favorable agreement. More >

Displaying 11-20 on page 2 of 1235. Per Page