Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22)
  • Open Access

    ARTICLE

    Mining Fine-Grain Face Forgery Cues with Fusion Modality

    Shufan Peng, Manchun Cai*, Tianliang Lu, Xiaowen Liu

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4025-4045, 2023, DOI:10.32604/cmc.2023.036688 - 31 March 2023

    Abstract Face forgery detection is drawing ever-increasing attention in the academic community owing to security concerns. Despite the considerable progress in existing methods, we note that: Previous works overlooked fine-grain forgery cues with high transferability. Such cues positively impact the model’s accuracy and generalizability. Moreover, single-modality often causes overfitting of the model, and Red-Green-Blue (RGB) modal-only is not conducive to extracting the more detailed forgery traces. We propose a novel framework for fine-grain forgery cues mining with fusion modality to cope with these issues. First, we propose two functional modules to reveal and locate the deeper… More >

  • Open Access

    ARTICLE

    An Active Image Forgery Detection Approach Based on Edge Detection

    Hüseyin Bilal Macit1, Arif Koyun2,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1603-1619, 2023, DOI:10.32604/cmc.2023.036216 - 06 February 2023

    Abstract Recently, digital images have become the most used data, thanks to high internet speed and high resolution, cheap and easily accessible digital cameras. We generate, transmit and store millions of images every second. Most of these images are insignificant images containing only personal information. However, in many fields such as banking, finance, public institutions, and educational institutions, the images of many valuable objects like ID cards, photographs, credit cards, and transaction receipts are stored and transmitted to the digital environment. These images are very significant and must be secured. A valuable image can be maliciously… More >

  • Open Access

    ARTICLE

    Copy Move Forgery Detection Using Novel Quadsort Moth Flame Light Gradient Boosting Machine

    R. Dhanya1,*, R. Kalaiselvi2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1577-1593, 2023, DOI:10.32604/csse.2023.031319 - 03 November 2022

    Abstract A severe problem in modern information systems is Digital media tampering along with fake information. Even though there is an enhancement in image development, image forgery, either by the photographer or via image manipulations, is also done in parallel. Numerous researches have been concentrated on how to identify such manipulated media or information manually along with automatically; thus conquering the complicated forgery methodologies with effortlessly obtainable technologically enhanced instruments. However, high complexity affects the developed methods. Presently, it is complicated to resolve the issue of the speed-accuracy trade-off. For tackling these challenges, this article put… More >

  • Open Access

    REVIEW

    A Thorough Investigation on Image Forgery Detection

    Anjani Kumar Rai*, Subodh Srivastava

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1489-1528, 2023, DOI:10.32604/cmes.2022.020920 - 20 September 2022

    Abstract Image forging is the alteration of a digital image to conceal some of the necessary or helpful information. It cannot be easy to distinguish the modified region from the original image in some circumstances. The demand for authenticity and the integrity of the image drive the detection of a fabricated image. There have been cases of ownership infringements or fraudulent actions by counterfeiting multimedia files, including re-sampling or copy-moving. This work presents a high-level view of the forensics of digital images and their possible detection approaches. This work presents a thorough analysis of digital image More >

  • Open Access

    ARTICLE

    Metaheuristics with Optimal Deep Transfer Learning Based Copy-Move Forgery Detection Technique

    C. D. Prem Kumar1,*, S. Saravana Sundaram2

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 881-899, 2023, DOI:10.32604/iasc.2023.025766 - 06 June 2022

    Abstract The extensive availability of advanced digital image technologies and image editing tools has simplified the way of manipulating the image content. An effective technique for tampering the identification is the copy-move forgery. Conventional image processing techniques generally search for the patterns linked to the fake content and restrict the usage in massive data classification. Contrastingly, deep learning (DL) models have demonstrated significant performance over the other statistical techniques. With this motivation, this paper presents an Optimal Deep Transfer Learning based Copy Move Forgery Detection (ODTL-CMFD) technique. The presented ODTL-CMFD technique aims to derive a DL… More >

  • Open Access

    ARTICLE

    Deep Learning Based Image Forgery Detection Methods

    Liang Xiu-jian1,2,*, Sun He2

    Journal of Cyber Security, Vol.4, No.2, pp. 119-133, 2022, DOI:10.32604/jcs.2022.032915 - 04 July 2022

    Abstract Increasingly advanced image processing technology has made digital image editing easier and easier. With image processing software at one’s fingertips, one can easily alter the content of an image, and the altered image is so realistic that it is illegible to the naked eye. These tampered images have posed a serious threat to personal privacy, social order, and national security. Therefore, detecting and locating tampered areas in images has important practical significance, and has become an important research topic in the field of multimedia information security. In recent years, deep learning technology has been widely… More >

  • Open Access

    ARTICLE

    Multiple Forgery Detection in Video Using Convolution Neural Network

    Vinay Kumar1,*, Vineet Kansal2, Manish Gaur2

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1347-1364, 2022, DOI:10.32604/cmc.2022.023545 - 18 May 2022

    Abstract With the growth of digital media data manipulation in today’s era due to the availability of readily handy tampering software, the authenticity of records is at high risk, especially in video. There is a dire need to detect such problem and do the necessary actions. In this work, we propose an approach to detect the interframe video forgery utilizing the deep features obtained from the parallel deep neural network model and thorough analytical computations. The proposed approach only uses the deep features extracted from the CNN model and then applies the conventional mathematical approach to… More >

  • Open Access

    ARTICLE

    Efficient Forgery Detection Approaches for Digital Color Images

    Amira Baumy1, Abeer D. Algarni2,*, Mahmoud Abdalla3, Walid El-Shafai4,5, Fathi E. Abd El-Samie3,4, Naglaa F. Soliman2,3

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3257-3276, 2022, DOI:10.32604/cmc.2022.021047 - 07 December 2021

    Abstract This paper is concerned with a vital topic in image processing: color image forgery detection. The development of computing capabilities has led to a breakthrough in hacking and forgery attacks on signal, image, and data communicated over networks. Hence, there is an urgent need for developing efficient image forgery detection algorithms. Two main types of forgery are considered in this paper: splicing and copy-move. Splicing is performed by inserting a part of an image into another image. On the other hand, copy-move forgery is performed by copying a part of the image into another position… More >

  • Open Access

    ARTICLE

    Duplicate Frame Video Forgery Detection Using Siamese-based RNN

    Maryam Munawar, Iram Noreen*

    Intelligent Automation & Soft Computing, Vol.29, No.3, pp. 927-937, 2021, DOI:10.32604/iasc.2021.018854 - 01 July 2021

    Abstract Video and image data is the most important and widely used format of communication today. It is used as evidence and authenticated proof in different domains such as law enforcement, forensic studies, journalism, and others. With the increase of video applications and data, the problem of forgery in video and images has also originated. Although a lot of work has been done on image forgery, video forensic is still a challenging area. Videos are manipulated in many ways. Frame insertion, deletion, and frame duplication are a few of the major challenges. Moreover, in the perspective… More >

  • Open Access

    ARTICLE

    Extended Forgery Detection Framework for COVID-19 Medical Data Using Convolutional Neural Network

    Sajid Habib Gill1, Noor Ahmed Sheikh1, Samina Rajpar1, Zain ul Abidin2, N. Z. Jhanjhi3,*, Muneer Ahmad4, Mirza Abdur Razzaq1, Sultan S. Alshamrani5, Yasir Malik6, Fehmi Jaafar7

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3773-3787, 2021, DOI:10.32604/cmc.2021.016001 - 06 May 2021

    Abstract Medical data tampering has become one of the main challenges in the field of secure-aware medical data processing. Forgery of normal patients’ medical data to present them as COVID-19 patients is an illegitimate action that has been carried out in different ways recently. Therefore, the integrity of these data can be questionable. Forgery detection is a method of detecting an anomaly in manipulated forged data. An appropriate number of features are needed to identify an anomaly as either forged or non-forged data in order to find distortion or tampering in the original data. Convolutional neural… More >

Displaying 11-20 on page 2 of 22. Per Page