Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    ARTICLE

    Experimental Study on Properties of Masonry Infill Walls Connected to Steel Frames with Different Connection Details

    Mehdi Kahrizi, Mehrzad TahamouliRoudsari*

    Structural Durability & Health Monitoring, Vol.14, No.2, pp. 165-185, 2020, DOI:10.32604/sdhm.2020.07816

    Abstract The properties of infills and the way they are connected to frames may have significant effects on the seismic behavior of the structure. This study presents an experimental study on evaluation and testing of five single story, single bay samples with the scale 1:3. This study strives to evaluate the behavior of masonry infill walls encased in steel frames, with emphasis on different details of the connection of the wall to the frame. Four frames with masonry infills and one frame without infill are experimented on by applying lateral load to their upper beams. Different details of the connection between… More >

  • Open Access

    ARTICLE

    Shear Deformation Effect in Second-Order Analysis of Composite Frames Subjected in Variable Axial Loading by BEM

    E.J. Sapountzakis1, V.G. Mokos1

    Structural Durability & Health Monitoring, Vol.2, No.4, pp. 207-224, 2006, DOI:10.3970/sdhm.2006.002.207

    Abstract In this paper a boundary element method is developed for the second-order analysis of frames consisting of composite beams of arbitrary constant cross section, taking into account shear deformation effect. The composite beam consists of materials in contact, each of which can surround a finite number of inclusions. The materials have different elasticity and shear moduli with same Poisson's ratio and are firmly bonded together. Each beam is subjected in an arbitrarily concentrated or distributed variable axial loading, while the shear loading is applied at the shear center of the cross section, avoiding in this way the induction of a… More >

  • Open Access

    ABSTRACT

    Fire Safety Analysis of Plastic Steel frames

    ZHANG Rong-gang1, 2,*, ZHANG Hong-tao3, BAI Yu-xing3, GAO Jian-ling3, ZHANG Lai-yong2, XU Bing-ye1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.1, pp. 17-18, 2011, DOI:10.3970/icces.2011.018.017

    Abstract Based on the upper bound theorem, the fire resistance is studied using the combination of element collapse mechanisms of steel frames, where the element collapse mechanisms are automatically determined from independent mechanisms. The fire limit load is calculated by solving a nonlinear mathematical programming. The computing procedure is programmed by FORTRAN language. Results show that this method is useful to find the collapse mechanism with the lowest fire limit load, which can provide a theoretical and practical way for the fire design of steel frame structure. More >

  • Open Access

    ABSTRACT

    Dynamic analysis of asymmetrically laminated composite frames

    Fuxing Miao1, Guojun Sun1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.12, No.3, pp. 93-94, 2009, DOI:10.3970/icces.2009.012.093

    Abstract Based on elastic wave theory, Pao[1] and his colleagues recently proposed a novel frequency domain matrix method, i.e. the Method of Reverberation-Ray Matrix (MRRM) for solving the transient response of truss-type structures. The theory has been shown accurately coincided with experimental data of a model truss for the early responses.
    Fiber reinforced laminated composites have advantages such as high specific strength, high specific stiffness, corrosion resistance etc.. The dynamic as well as the static behavior of laminated composites is largely dependent upon fiber orientation and ply-stacking sequence. Due to inhomogeneity and anisotropy of the material, these structures are vulnerableto highly… More >

  • Open Access

    ABSTRACT

    Transient Response Analysis of Viscoelastic Frames with the Method of Reverberation Ray Matrix

    Zhenguo Tu1, Fuxing Miao1, Guojun Sun1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.2, No.4, pp. 125-130, 2007, DOI:10.3970/icces.2007.002.125

    Abstract In this paper the reverberation ray matrix method, which was developed recently by Professor Pao and his colleagues for analyzing dynamic response of elastic trusses or frames, is extended and used to solve the transient response of frames made of viscoelastic bars. Originally for the solution of elastic structure the matrix (I-R)-1 is expanded into Neumann series to circumvent the difficulty of singularity in reversing the matrix in frequency domain. However, it is not necessary to expand this matrix since there is no singularity problem for viscoelastic frame due to viscous damping. The accuracy and effectiveness of applying reverberation ray… More >

  • Open Access

    ARTICLE

    Fragility Assessment of Pre-Northridge Steel Moment Frames Using Finite-Length Plastic Hinge Elements and Concentrated Plasticity Fracture Elements

    Filipe L. A. Ribeiro1,*, Andre R. Barbosa2, Luis C. Neves3

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.3, pp. 657-676, 2019, DOI:10.32604/cmes.2019.06296

    Abstract Although pre-Northridge earthquake steel moment resisting frame buildings have been shown to be susceptible to brittle connection failures, they still represent a large fraction of the existing steel buildings in the United States of America. In this study, the performance of the 3- and 9-story Los Angeles pre-Northridge SAC buildings are analyzed considering ductile and brittle beam-column connection failures, and their uncertainty. This paper contributes to understanding the influence of uncertainty associated with connections brittle fracture on building interstory deformation capacity and its impact on bias and variability of fragility functions and loss assessment. The results show that considering brittle… More >

  • Open Access

    ARTICLE

    Locking-free Thick-Thin Rod/Beam Element for Large Deformation Analyses of Space-Frame Structures, Based on the Reissner Variational Principle and A Von Karman Type Nonlinear Theory

    Y.C. Cai1,2, J.K. Paik3, S.N. Atluri4

    CMES-Computer Modeling in Engineering & Sciences, Vol.58, No.1, pp. 75-108, 2010, DOI:10.3970/cmes.2010.058.075

    Abstract This paper presents a new shear flexible beam/rod element for large deformation analyses of space-frame structures comprising of thin or thick members, based on the Reissner variational principle and a von Karman type nonlinear theory of deformation in the co-rotational reference frame of the present beam element. The C0continuous trial functions for transverse rotations in two independent directions are used over each element, to derive an explicit expression for the (16x16)symmetrictangent stiffness matrix of the beam element in the co-rotational reference frame. When compared to the primal approach wherein C1continuous trial functions for transverse displacements over each element are necessary,… More >

  • Open Access

    ARTICLE

    Locking-free Thick-Thin Rod/Beam Element Based on a von Karman Type Nonlinear Theory in Rotated Reference Frames For Large Deformation Analyses of Space-Frame Structures

    H.H. Zhu1, Y.C. Cai1,2, J.K. Paik3, S.N. Atluri4

    CMES-Computer Modeling in Engineering & Sciences, Vol.57, No.2, pp. 175-204, 2010, DOI:10.3970/cmes.2010.057.175

    Abstract This paper presents a new shear flexible beam/rod element for large deformation analyses of space-frame structures, comprising of thin or thick beams. The formulations remain uniformly valid for thick or thin beams, without using any numerical expediencies such as selective reduced integrations, etc. A von Karman type nonlinear theory of deformation is employed in the co-rotational reference frame of the present beam element, to account for bending, stretching, torsion and shearing of each element. Transverse shear strains in two independant directions are introduced as additional variables, in order to eliminate the shear locking phenomenon. An assumed displacement approach is used… More >

  • Open Access

    ARTICLE

    Large Deformation Analyses of Space-Frame Structures, Using Explicit Tangent Stiffness Matrices, Based on the Reissner variational principle and a von Karman Type Nonlinear Theory in Rotated Reference Frames

    Yongchang Cai1,2, J.K. Paik3, Satya N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.54, No.3, pp. 335-368, 2009, DOI:10.3970/cmes.2009.054.335

    Abstract This paper presents a simple finite element method, based on assumed moments and rotations, for geometrically nonlinear large rotation analyses of space frames consisting of members of arbitrary cross-section. A von Karman type nonlinear theory of deformation is employed in the updated Lagrangian co-rotational reference frame of each beam element, to account for bending, stretching, and torsion of each element. The Reissner variational principle is used in the updated Lagrangian co-rotational reference frame, to derive an explicit expression for the (12x12)symmetrictangent stiffness matrix of the beam element in the co-rotational reference frame. The explicit expression for the finite rotation of… More >

  • Open Access

    ARTICLE

    Large Deformation Analyses of Space-Frame Structures, with Members of arbitrary Cross-Section, Using Explicit Tangent Stiffness Matrices, Based on a von Karman Type Nonlinear Theory in Rotated Reference Frames

    Yongchang Cai1,2, J.K. Paik3, Satya N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.53, No.2, pp. 123-152, 2009, DOI:10.3970/cmes.2009.053.123

    Abstract This paper presents a simple finite element method, based on simple mechanics and physical clarity, for geometrically nonlinear large rotation analyses of space frames consisting of members of arbitrary cross-section. A co-rotational reference frame, involving the axes of each finitely rotated beam finite-element, is used as the Updated Lagrangian reference frame for the respective element. A von Karman type nonlinear theory of deformation is employed in the co-rotational reference frame of each beam element, to account for bending, stretching, and torsion of each element. An assumed displacement approach is used to derive an explicit expression for the (12x12)symmetrictangent stiffness matrix… More >

Displaying 11-20 on page 2 of 23. Per Page