Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    ARTICLE

    Extended Limit Analysis of Strain Softening Frames Involving 2nd-Order Geometric Nonlinearity and Limited Ductility

    S. Tangaramvong1, F. Tin-Loi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.42, No.3, pp. 217-256, 2009, DOI:10.3970/cmes.2009.042.217

    Abstract Classical limit analysis is extended to include the effects of 2nd-order geometric and material nonlinearities, as well as the inclusion of limited ductility constraints. For the class of frame structures considered, the material constitutive model adopted can simultaneously accommodate the effects of combined axial and flexural force as well as local softening instability through the use of piecewise linearized yield surfaces. The main feature of the approach developed is to compute, in a single step, an upper bound to the maximum load. Corresponding displacements and stresses can be obtained as a by-product of the analysis. The problem is formulated as… More >

  • Open Access

    ARTICLE

    Nonlinear Dynamic Response Analysis of Steel Frames under Seismic Action

    T. Yoda1, N. Kodama2

    CMES-Computer Modeling in Engineering & Sciences, Vol.11, No.1, pp. 1-8, 2006, DOI:10.3970/cmes.2006.011.001

    Abstract A nonlinear dynamic response analysis of a box section steel rigid frame under seismic action is proposed on the basis of a beam model. The average stress-strain relation of the beam model can be formulated for transverse stiffener spacing, in which stress-strain relation after local buckling is assumed. As a result of the present study, the maximum lateral displacements and the residual displacements of a box section steel rigid frame were well estimated by the proposed beam element model that considers the deterioration effect due to local buckling. More >

  • Open Access

    ARTICLE

    Fire Safety Analysis of Plastic Steel Frames

    Rong-gang Zhang1,2, Hong-tao Zhang3 , Yu-xing Bai3, Jian-ling Gao3, Lai-yong Zhang2 , Bing-ye Xu1

    CMC-Computers, Materials & Continua, Vol.20, No.3, pp. 243-250, 2010, DOI:10.3970/cmc.2010.020.243

    Abstract Based on the upper bound theorem, the fire resistance is studied using the combination of element collapse mechanisms of steel frames, where the element collapse mechanisms are automatically determined from independent mechanisms. The fire limit load is calculated by solving a nonlinear mathematical programming. The computing procedure is programmed by FORTRAN language. Results show that this method is useful to find the collapse mechanism with the lowest fire limit load, which can provide a theoretical and practical way for the fire design of steel frame structure. More >

Displaying 21-30 on page 3 of 23. Per Page