Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    ARTICLE

    A Temporary Frequency Response Strategy Using a Voltage Source-Based Permanent Magnet Synchronous Generator and Energy Storage Systems

    Baogang Chen1, Fenglin Miao2,*, Jing Yang1, Chen Qi2, Wenyan Ji1

    Energy Engineering, Vol.121, No.2, pp. 541-555, 2024, DOI:10.32604/ee.2023.028327

    Abstract Energy storage systems (ESS) and permanent magnet synchronous generators (PMSG) are speculated to be able to exhibit frequency regulation capabilities by adding differential and proportional control loops with different control objectives. The available PMSG kinetic energy and charging/discharging capacities of the ESS were restricted. To improve the inertia response and frequency control capability, we propose a short-term frequency support strategy for the ESS and PMSG. To this end, the weights were embedded in the control loops to adjust the participation of the differential and proportional controls based on the system frequency excursion. The effectiveness of the proposed control strategy was… More >

  • Open Access

    ARTICLE

    Diagnosis of Disc Space Variation Fault Degree of Transformer Winding Based on K-Nearest Neighbor Algorithm

    Song Wang1,*, Fei Xie1, Fengye Yang1, Shengxuan Qiu1, Chuang Liu2, Tong Li3

    Energy Engineering, Vol.120, No.10, pp. 2273-2285, 2023, DOI:10.32604/ee.2023.030107

    Abstract Winding is one of the most important components in power transformers. Ensuring the health state of the winding is of great importance to the stable operation of the power system. To efficiently and accurately diagnose the disc space variation (DSV) fault degree of transformer winding, this paper presents a diagnostic method of winding fault based on the K-Nearest Neighbor (KNN) algorithm and the frequency response analysis (FRA) method. First, a laboratory winding model is used, and DSV faults with four different degrees are achieved by changing disc space of the discs in the winding. Then, a series of FRA tests… More > Graphic Abstract

    Diagnosis of Disc Space Variation Fault Degree of Transformer Winding Based on K-Nearest Neighbor Algorithm

  • Open Access

    ARTICLE

    Adaptive Neuro-Fuzzy Based Load Frequency Control in Presence of Energy Storage Devices

    Pankaj Jood*, Sanjeev Kumar Aggarwal, Vikram Chopra

    Intelligent Automation & Soft Computing, Vol.34, No.2, pp. 785-804, 2022, DOI:10.32604/iasc.2022.025217

    Abstract Energy storage technologies are utilized for improving the primary frequency control in complex electrical systems. In this paper, the modeling and simulation of a two-area power system is done to evaluate and compare the impact of three different energy storage applications on load frequency control performance. Capacitive energy storage (CES), battery energy storage (BES), and superconducting magnetic energy storage (SMES) are considered for the study. On the basis of peak overshoot and settling time, the performance of these energy storage devices is compared. The power system consists of thermal, wind, and solar resources. All nonlinearities are incorporated in the system… More >

  • Open Access

    ARTICLE

    Research on the Impacts of the Inertia and Droop Control Gains from a Variable-Speed Wind Turbine Generator on the Frequency Response

    Dejian Yang1, Yien Xu1, Tong Zhu1, Yang Wang1, Qiuhan Cao1, Yuang Ma1, Enshu Jin2, Xinsong Zhang1,*, Haochen Sun3,*

    Energy Engineering, Vol.119, No.2, pp. 539-554, 2022, DOI:10.32604/ee.2022.015133

    Abstract System frequency must be kept very close to its nominal range to ensure the stability of an electric power grid. Excessive system frequency variations are able to result in load shedding, frequency instability, and even generator damage. With increasing wind power penetration, there is rising concern about the reduction in inertia response and primary frequency control in the electric power grid. Converter-based wind generation is capable of providing inertia response and primary frequency response; nevertheless, the primary frequency and inertia responses of wind generation are different from those of conventional synchronous fleets; it is not completely understood how the primary… More >

  • Open Access

    ARTICLE

    Modeling Rogowski Coils for Monitoring Surge Arrester Discharge Currents

    Nehmdoh A. Sabiha1,*, Hend I. Alkhammash2

    Computer Systems Science and Engineering, Vol.42, No.2, pp. 439-449, 2022, DOI:10.32604/csse.2022.022506

    Abstract Rogowski coils (RCs) are widely used to measure power or high frequency currents based on their design. In this paper, two types of RCs that are circular (traditional) and cylindrical shapes wound using wire covered by varnish are constructed. This construction is carried out to be suitable for monitoring the discharge current of the surge arrester installed in the distribution system. Concerning high frequency RC modeling for both types considering transfer function is introduced. Self-integrating for both types is attained. Therefore, the experimental tests using function generator for both coils are carried out to identify the parameters of the transfer… More >

  • Open Access

    ARTICLE

    Identification of Composite-Metal Bolted Structures with Nonlinear Contact Effect

    Mohammad Ghalandari1, Ibrahim Mahariq2, Majid Pourghasem3, Hasan Mulki2, Fahd Jarad4,5,*

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3383-3397, 2022, DOI:10.32604/cmc.2022.020245

    Abstract The middle layer model has been used in recent years to better describe the connection behavior in composite structures. The influencing parameters including low pre-screw and high preload have the main effects on nonlinear behavior of the connection as well as the amplitude of the excitation force applied to the structure. Therefore, in this study, the effects of connection behavior on the general structure in two sections of increasing damping and reducing the stiffness of the structures that lead to non-linear phenomena have been investigated. Due to the fact that in composite structure we are faced to the limitation of… More >

  • Open Access

    ARTICLE

    Unsupervised Time-series Fatigue Damage State Estimation of Complex Structure Using Ultrasound Based Narrowband and Broadband Active Sensing

    S.Mohanty1, A. Chattopadhyay2, J. Wei3, P. Peralta4

    Structural Durability & Health Monitoring, Vol.5, No.3, pp. 227-250, 2009, DOI:10.3970/sdhm.2009.005.227

    Abstract This paper proposes unsupervised system identification based methods to estimate time-series fatigue damage states in real-time. Ultrasound broadband input is used for active damage interrogation. Novel damage index estimation techniques based on dual sensor signals are proposed. The dual sensor configuration is used to remove electrical noise, as well as to improve spatial resolution in damage state estimation. The scalar damage index at any particular damage condition is evaluated using nonparametric system identification techniques, which includes an empirical transfer function estimation approach and a correlation analysis approach. In addition, the effectiveness of two sensor configurations (configuration 1: sensors placed near… More >

  • Open Access

    ARTICLE

    Effect of Nitriding Treatment on Fatigue life for Free Piston Linear Engine Component using Frequency Response Method: a Finite Element Approach

    M. M. Rahman1, A. K. Ariffin2, S. Abdullah2, A. B. Rosli1

    Structural Durability & Health Monitoring, Vol.3, No.4, pp. 197-210, 2007, DOI:10.3970/sdhm.2007.003.197

    Abstract Low weight and long lifetime are necessary requirements for automobiles to significantly reduce CO2 emission and environmental burdens in their use. Aluminum alloys are one of the most promising materials selections for automobiles parts and electrical components to reduce their weight and to increase their specific strength. This paper presents the role of nitriding on the fatigue life of the vibrating cylinder block for a new two-stroke free piston engine using variable amplitude loading conditions. The finite element modeling and analysis have been performed utilising a computer aided design and a finite element analysis codes respectively. In addition, the fatigue… More >

  • Open Access

    ARTICLE

    Influence of Surface Treatements on Fatigue Life of a Free Piston Linear Generator Engine Components Using Narrow Band Approach

    M. M. Rahman1, A.K. Ariffin, N. Jamaludin, C. H. C. Haron

    Structural Durability & Health Monitoring, Vol.2, No.2, pp. 69-82, 2006, DOI:10.3970/sdhm.2006.002.069

    Abstract This paper describes finite element based vibration fatigue analysis techniques to predict fatigue life using the narrow band frequency response approach. The life prediction results are useful for improving the component design at a very early development stage. The approach is found to be suitable for periodic loading but requires very large time records to accurately describe random loading processes. The focus of this paper is to investigate the effects of surface treatments on the fatigue life of the components of free piston linear engine. The finite element modeling and frequency response analysis have been performed using a computer-aided design… More >

  • Open Access

    ARTICLE

    Vibration Fatigue Analysis of Cylinder Head of a New Two-Stroke Free Poston Engine Using Finite Element Approach

    M. M. Rahman1, A. K. Ariffin1, N. Jamaludin1, C. H. C. Haron1

    Structural Durability & Health Monitoring, Vol.1, No.2, pp. 121-130, 2005, DOI:10.3970/sdhm.2005.001.121

    Abstract The focus of this paper is to design a new two-stroke linear generator engine. This paper describes the finite element based vibration fatigue analysis techniques that can be used to predict fatigue life using total life approach. Fatigue damage in traditionally determined from time signals of loading, usually in the form of stress and strain. However, there are scenarios when a spectral form of loading is more appropriate. In this case the loading is defined in terms of its magnitude at different frequencies in the form of a power spectral density (PSD) plot. A power spectral density function is the… More >

Displaying 1-10 on page 1 of 23. Per Page