Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (51)
  • Open Access

    ARTICLE

    Oil Palm Particleboard: Properties and Fungi Susceptibility

    Nur Azreena Idris1,*, Madihah Ahmad Zairun2, Aisyah Humaira Alias1, Zawawi Ibrahim1, Noorshamsiana Abdul Wahab1

    Journal of Renewable Materials, Vol.13, No.1, pp. 163-180, 2025, DOI:10.32604/jrm.2024.053388 - 20 January 2025

    Abstract The utilization of oil palm biomass in the production of high-value products has increased substantially. Due to the presence of sugars and starches in their tissues, oil palms have an exceptionally low natural resistance to fungi, making them susceptible to contamination. In this study, the properties of particleboard made from oil palm fibers, namely empty fruit bunches (EFB), oil palm trunks (OPT), and oil palm fronds (OPF) fibers and its potential for fungal attack were evaluated. The chemical composition, spectroscopic characterization, morphological features, and elemental analysis of oil palm biomass fibers were identified and thoroughly… More > Graphic Abstract

    Oil Palm Particleboard: Properties and Fungi Susceptibility

  • Open Access

    ARTICLE

    Elicitation of PVY Resistance by Coniothyrium aleuritis

    Mohsen Mohamed Elsharkawy1,*, Mari Sumayli2, Faisal Ay Alzahrani3

    Phyton-International Journal of Experimental Botany, Vol.93, No.12, pp. 3373-3385, 2024, DOI:10.32604/phyton.2024.058875 - 31 December 2024

    Abstract Endophytes associated with plants are recognized as bio-reservoirs of natural products and denote a significant symbiotic interaction in nature. Endophytes penetrate the plant’s interior tissues without showing any indications of disease or obvious alterations. In this study, the potential of a novel and new isolated plant growth-stimulating fungus, Coniothyrium aleuritis, was evaluated against PVY (the pathogen potato virus Y) on potato plants. Many parameters, including disease severity, PVY titer, enzymatic profiling, defense-related biochemical marker (carotenoid), phenolic compounds, proline content, as well as growth and yield parameters, have been investigated to clarify the role of C. aleuritis isolate… More > Graphic Abstract

    Elicitation of PVY Resistance by <i>Coniothyrium aleuritis</i>

  • Open Access

    ARTICLE

    Comparative Effects of Compost and Arbuscular Mycorrhizal Fungi Versus NPK on Agro-Physiological, Biochemical and Tolerance Responses of Tomatoes to Drought

    Abderrahim Boutasknit1,2,3,*, Wissal Benaffari2,3, Mohamed Anli2,3, Abdoussadeq Ouamnina2,3, Amine Assouguem4, Rachid Lahlali4,*, Abdelilah Meddich2,3,5

    Phyton-International Journal of Experimental Botany, Vol.93, No.12, pp. 3589-3616, 2024, DOI:10.32604/phyton.2024.057881 - 31 December 2024

    Abstract Drought stress (DS) and overuse of chemical fertilizers cause considerable losses in the agro-physiological as well as biochemical performance of plants. In this context, considerable effort will be required to replace chemical fertilizers (NPK) with biostimulants as an important approach to enhance the productivity and sustainability of agriculture. Here, we evaluated the effect of separating and/or combining arbuscular mycorrhizal fungi (AMF) with compost (C) in comparison to the use of NPK on the growth, physiological and biochemical of tomatoes under DS. The findings showed that DS significantly reduced the growth and physiological attributes of tomatoes.… More >

  • Open Access

    ARTICLE

    Mycorrhizal Synthesis and Physiological Responses of Entoloma clypeatum and Three Rosaceae Fruit Trees

    Chen Hao, Chunfeng Mu, Xinyan Yu, Xiaoran Chen, Mengmeng Zhu, Jianrui Wang*, Yu Liu*

    Phyton-International Journal of Experimental Botany, Vol.93, No.12, pp. 3549-3572, 2024, DOI:10.32604/phyton.2024.056114 - 31 December 2024

    Abstract Entoloma clypeatum, a kind of edible ectomycorrhizal fungus, can be usually symbiotic with Rosaceae fruit trees. Fruit trees have become an important part of China’s agriculture. The present work focused on exploring how E. clypeatum affected symbiotic Rosaceae plants and establishing a symbiotic culture with Malus robusta, Pyrus betulifolia and Prunus armeniaca rootstocks. The results showed that E. clypeatum and three Rosaceae plants can generate cylindrical or clavate mycorrhizae. The inoculation treatment had different degrees of positive effects on the three plants. Relative to the non-inoculated group, biomass in symbiotic plants increased (32.8%–191.1%), and photosynthesis enhanced. In the level of… More >

  • Open Access

    ARTICLE

    Uniting the Role of Entomopathogenic Fungi against Rhizoctonia solani JG Kühn, the Causal Agent of Cucumber Damping-Off and Root Rot Diseases

    Abdelhak Rhouma1, Lobna Hajji-Hedfi1,*, Nahla Alsayd Bouqellah2,*, Pravin Babasaheb Khaire3, Samar Dali1, Omaima Bargougui1, Amira Khlif1, Laith Khalil Tawfeeq Al-Ani4

    Phyton-International Journal of Experimental Botany, Vol.93, No.11, pp. 2857-2881, 2024, DOI:10.32604/phyton.2024.057591 - 30 November 2024

    Abstract Beauveria bassiana and Metarhizium spp. are entomopathogenic fungi with potential applications beyond insect pest control, including plant disease suppression, plant growth promotion, and rhizosphere colonization. This study investigated the plant growth-promoting characteristics and extracellular enzyme activities of Metarhizium spp. and B. bassiana in relation to phytopathogen interactions and plant growth. Additionally, the efficacy of these fungi in mitigating damping-off and root rot caused by Rhizoctonia solani on cucumber plants was evaluated in vitro and in vivo. Results indicate that B. bassiana and M. anisopliae produce indole-3-acetic acid, hydrocyanic acid, and hydrolytic enzymes. Seed treatment with these fungi significantly reduced disease severity (3.85%–1.86%, respectively)… More >

  • Open Access

    ARTICLE

    Arbuscular Mycorrhizal Fungi Improve Drought Tolerance of Quinoa Grown in Compost-Amended Soils by Altering Primary and Secondary Metabolite Levels

    Wissal Benaffari1,2,3, Fatima-Ezzahra Soussani1,2,4, Abderrahim Boutasknit1,2,5, Salma Toubali1,2,3, Abir Ben Hassine3, Hala Ben Ahmed3, Rachid Lahlali7,*, Abdelilah Meddich1,2,6,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.9, pp. 2285-2302, 2024, DOI:10.32604/phyton.2024.055052 - 30 September 2024

    Abstract Quinoa (Chenopodium quinoa) has recently gained popularity as a pseudo-cereal cultivated in various countries due to the nutritional and antioxidant benefits of its seeds, and its capacity to persist in water-stressed environments. Our study aimed to assess the effects of native arbuscular mycorrhizal fungi (AMF) and local organic amendments on the metabolic responses and antioxidant activity of quinoa seeds under water-stressed conditions. To this end, quinoa plants were grown in soils inoculated with an indigenous mycorrhizal consortium AMF and amended with two types of compost from horse manure (HM) and green waste (GW) under two water… More >

  • Open Access

    ARTICLE

    NFT Security Matrix: Towards Modeling NFT Ecosystem Threat

    Peng Liao1, Chaoge Liu2, Jie Yin1,3,*, Zhi Wang2, Xiang Cui2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3255-3285, 2024, DOI:10.32604/cmes.2024.043855 - 11 March 2024

    Abstract Digital assets have boomed over the past few years with the emergence of Non-fungible Tokens (NFTs). To be specific, the total trading volume of digital assets reached an astounding $55.5 billion in 2022. Nevertheless, numerous security concerns have been raised by the rapid expansion of the NFT ecosystem. NFT holders are exposed to a plethora of scams and traps, putting their digital assets at risk of being lost. However, academic research on NFT security is scarce, and the security issues have aroused rare attention. In this study, the NFT ecological process is comprehensively explored. This… More >

  • Open Access

    ARTICLE

    Arbuscular Mycorrhizal Fungi Alleviates Salt-Alkali Stress Demage on Syneilesis aconitifolia

    Linlin Fang, Jiamei Xu, Chunxue Yang*

    Phyton-International Journal of Experimental Botany, Vol.92, No.12, pp. 3195-3209, 2023, DOI:10.32604/phyton.2023.043049 - 28 December 2023

    Abstract Syneilesis aconitifolia is a potential ground cover and decorative material in gardens, which exhibits a strong salt-alkali tolerance, and also has medicinal value. In this study, the arbuscular mycorrhizal (AM) fungi community in the soil surrounding S. aconitifolia roots in the Songnen saline-alkali grassland was used as the inoculation medium for a pot cultivation experiment. After normal culture for 90 days, NaCl and NaHCO3 solutions were applied to subject plants to salt or alkali stress. Solution concentrations of 50, 100, and 200 mmol/L were applied for 10 days, and mycorrhizal colonization, biomass, relative water content (RWC), chlorophyll concentration,… More >

  • Open Access

    ARTICLE

    A New Exploration of Artificially Induced Spalted Wood of Two Fungi: Hypoxylon and Sistotrema

    Yan Yan, Junpeng Dong, Haibo Hu, Susu Yang, Lin Liu, Lei Qin*

    Journal of Renewable Materials, Vol.11, No.11, pp. 3907-3916, 2023, DOI:10.32604/jrm.2023.028099 - 31 October 2023

    Abstract One strain of Hypoxylon sp. CXM-3 and one strain of Sistotrema brinkmannii CXM-4 were inoculated onto sterilized cherry, poplar, birch, and basswood sheets in a certain shape and incubated at constant temperature and humidity for 4, 8, 12, and 16 weeks, respectively, to analyze whether the grain pattern formed by the zone lines was consistent with the predetermined pattern. The results showed that the zone lines of CXM-3 of Hypoxylon were free, delicate, and soft, with brown lines and black staining, mostly accompanied by black and brown dots, facets, and clusters, while the zone lines of CXM-4 of… More > Graphic Abstract

    A New Exploration of Artificially Induced Spalted Wood of Two Fungi: <i>Hypoxylon</i> and <i>Sistotrema</i>

  • Open Access

    ARTICLE

    Restructuring Tilth Layers Can Change the Microbial Community Structure and Affect the Occurrence of Verticillium Wilt in Cotton Field

    Ming Dong#, Yan Wang#, Shulin Wang, Guoyi Feng, Qian Zhang, Yongzeng Lin, Qinglong Liang, Yongqiang Wang*, Hong Qi*

    Phyton-International Journal of Experimental Botany, Vol.92, No.10, pp. 2841-2860, 2023, DOI:10.32604/phyton.2023.030465 - 15 September 2023

    Abstract Restructuring tilth layers (RTL) is a tillage method that exchanges the 0–20 and 20–40 cm soil layers that can be applied during cotton cultivation to increase cotton yield, eliminate weeds and alleviate severe disease, including Verticillium wilt. However, the mechanism by which RTL inhibits Verticillium wilt is unclear. Therefore, we investigated the distribution of microbial communities after rotary tillage (CK) and RTL treatments to identify the reasons for the reduction of Verticillium wilt in cotton fields subjected to RTL. Illumina high-throughput sequencing was used to sequence the bacterial and fungal genes. The disease incidence and More >

Displaying 1-10 on page 1 of 51. Per Page