Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (47)
  • Open Access

    ARTICLE

    Decision Making Based on Fuzzy Soft Sets and Its Application in COVID-19

    S. A. Al blowi1, M. El Sayed2, M. A. El Safty3,*

    Intelligent Automation & Soft Computing, Vol.30, No.3, pp. 961-972, 2021, DOI:10.32604/iasc.2021.018242

    Abstract Real-world applications are now dealing with a huge amount of data, especially in the area of high-dimensional features. Trait reduction is one of the major steps in decision making problems. It refers to the determination of a minimum subset of attributes which preserves the final decision based on the entire set of attributes. Unfortunately, most of the current features are irrelevant or redundant, which makes these systems unreliable and imprecise. This paper proposes a new paradigm based on fuzzy soft relationship and level fuzzy soft relationship, called Union - Intersection decision making method. Using these new principles, the decision-making strategy… More >

  • Open Access

    ARTICLE

    An Approach Using Fuzzy Sets and Boosting Techniques to Predict Liver Disease

    Pushpendra Kumar1,2,*, Ramjeevan Singh Thakur3

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3513-3529, 2021, DOI:10.32604/cmc.2021.016957

    Abstract The aim of this research is to develop a mechanism to help medical practitioners predict and diagnose liver disease. Several systems have been proposed to help medical experts by diminishing error and increasing accuracy in diagnosing and predicting diseases. Among many existing methods, a few have considered the class imbalance issues of liver disorder datasets. As all the samples of liver disorder datasets are not useful, they do not contribute to learning about classifiers. A few samples might be redundant, which can increase the computational cost and affect the performance of the classifier. In this paper, a model has been… More >

  • Open Access

    ARTICLE

    Multi-Criteria Decision Making Based on Bipolar Picture Fuzzy Operators and New Distance Measures

    Muhammad Riaz1, Harish Garg2, Hafiz Muhammad Athar Farid1, Ronnason Chinram3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 771-800, 2021, DOI:10.32604/cmes.2021.014174

    Abstract This paper aims to introduce the novel concept of the bipolar picture fuzzy set (BPFS) as a hybrid structure of bipolar fuzzy set (BFS) and picture fuzzy set (PFS). BPFS is a new kind of fuzzy sets to deal with bipolarity (both positive and negative aspects) to each membership degree (belonging-ness), neutral membership (not decided), and non-membership degree (refusal). In this article, some basic properties of bipolar picture fuzzy sets (BPFSs) and their fundamental operations are introduced. The score function, accuracy function and certainty function are suggested to discuss the comparability of bipolar picture fuzzy numbers (BPFNs). Additionally, the concept… More >

  • Open Access

    ARTICLE

    Solid Waste Collection System Selection Based on Sine Trigonometric Spherical Hesitant Fuzzy Aggregation Information

    Muhammad Naeem1, Aziz Khan2, Saleem Abdullah2,*, Shahzaib Ashraf3, Ahmad Ali Ahmad Khammash4

    Intelligent Automation & Soft Computing, Vol.28, No.2, pp. 459-476, 2021, DOI:10.32604/iasc.2021.016822

    Abstract Spherical fuzzy set (SFS) as one of several non-standard fuzzy sets, it introduces a number triplet (a,b,c) that satisfies the requirement a2 + b2 + c2 ≤ 1 to express membership grades. Due to the expression, SFS has a more extensive description space when describing fuzzy information, which attracts more attention in scientific research and engineering practice. Just for this reason, how to describe the fuzzy information more reasonably and perfectly is the hot that scholars pay close attention to. In view of this hot, in this paper, the notion of spherical hesitant fuzzy set is introduced as a generalization… More >

  • Open Access

    ARTICLE

    Spherical Linear Diophantine Fuzzy Sets with Modeling Uncertainties in MCDM

    Muhammad Riaz1, Masooma Raza Hashmi1, Dragan Pamucar2, Yuming Chu3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.3, pp. 1125-1164, 2021, DOI:10.32604/cmes.2021.013699

    Abstract The existing concepts of picture fuzzy sets (PFS), spherical fuzzy sets (SFSs), T-spherical fuzzy sets (T-SFSs) and neutrosophic sets (NSs) have numerous applications in decision-making problems, but they have various strict limitations for their satisfaction, dissatisfaction, abstain or refusal grades. To relax these strict constraints, we introduce the concept of spherical linear Diophantine fuzzy sets (SLDFSs) with the inclusion of reference or control parameters. A SLDFS with parameterizations process is very helpful for modeling uncertainties in the multi-criteria decision making (MCDM) process. SLDFSs can classify a physical system with the help of reference parameters. We discuss various real-life applications of… More >

  • Open Access

    ARTICLE

    Power Aggregation Operators and Similarity Measures Based on Improved Intuitionistic Hesitant Fuzzy Sets and their Applications to Multiple Attribute Decision Making

    Tahir Mahmood1, Wajid Ali1, Zeeshan Ali1, Ronnason Chinram2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.3, pp. 1165-1187, 2021, DOI:10.32604/cmes.2021.014393

    Abstract Intuitionistic hesitant fuzzy set (IHFS) is a mixture of two separated notions called intuitionistic fuzzy set (IFS) and hesitant fuzzy set (HFS), as an important technique to cope with uncertain and awkward information in realistic decision issues. IHFS contains the grades of truth and falsity in the form of the subset of the unit interval. The notion of IHFS was defined by many scholars with different conditions, which contain several weaknesses. Here, keeping in view the problems of already defined IHFSs, we will define IHFS in another way so that it becomes compatible with other existing notions. To examine the… More >

  • Open Access

    ARTICLE

    Prospect Theory Based Hesitant Fuzzy Multi-Criteria Decision Making for Low Sulphur Fuel of Maritime Transportation

    Changli Lu1, Ming Zhao1,2, Imran Khan3, Peerapong Uthansakul4,*

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1511-1528, 2021, DOI:10.32604/cmc.2020.012556

    Abstract The environmental impact of maritime transport has now become a relevant issue in sustainable policy formulation and has attracted increasing interest from academia. For the sustainable development of maritime transport, International Maritime Organization stipulates that the sulfur content of ship emissions will reach 0.5 from 2020. With the approaching of the stipulated implementation date, shipowners need to adopt scientific methods to make decision on low sulfur fuel. In this study, we applied a prospect theory based hesitant fuzzy multi-criteria decision-making model to obtain the optimal decision of low Sulphur marine fuel. For this purpose, the hesitant fuzzy decision matrix is… More >

  • Open Access

    ARTICLE

    Big Data Audit of Banks Based on Fuzzy Set Theory to Evaluate Risk Level

    Yilin Bi1, Yuxin Ouyang1, Guang Sun1, Peng Guo1, 2, Jianjun Zhang3, Yijun Ai1, *

    Journal on Big Data, Vol.2, No.1, pp. 9-18, 2020, DOI:10.32604/jbd.2020.01002

    Abstract The arrival of big data era has brought new opportunities and challenges to the development of various industries in China. The explosive growth of commercial bank data has brought great pressure on internal audit. The key audit of key products limited to key business areas can no longer meet the needs. It is difficult to find abnormal and exceptional risks only by sampling analysis and static analysis. Exploring the organic integration and business processing methods between big data and bank internal audit, Internal audit work can protect the stable and sustainable development of banks under the new situation. Therefore, based… More >

  • Open Access

    ARTICLE

    Color Image Segmentation Using Soft Rough Fuzzy-C-Means and Local Binary Pattern

    R.V.V. Krishna1,*, S. Srinivas Kumar2

    Intelligent Automation & Soft Computing, Vol.26, No.2, pp. 281-290, 2020, DOI:10.31209/2019.100000121

    Abstract In this paper, a color image segmentation algorithm is proposed by extracting both texture and color features and applying them to the one -against-all multi class support vector machine (MSVM) classifier for segmentation. Local Binary Pattern is used for extracting the textural features and L*a*b color model is used for obtaining the color features. The MSVM is trained using the samples obtained from a novel soft rough fuzzy c-means (SRFCM) clustering. The fuzzy set based membership functions capably handle the problem of overlapping clusters. The lower and upper approximation concepts of rough sets deal well with uncertainty, vagueness, and incompleteness… More >

  • Open Access

    ARTICLE

    Z-Numbers and Type-2 Fuzzy Sets: A Representation Result

    R. A. Alieva,b, Vladik Kreinovichc

    Intelligent Automation & Soft Computing, Vol.24, No.1, pp. 205-210, 2018, DOI:10.1080/10798587.2017.1330310

    Abstract Traditional [0; 1] based fuzzy sets were originally invented to describe expert knowledge expressed in terms of imprecise “fuzzy” words from the natural language. To make this description more adequate, several generalizations of the traditional [0; 1] based fuzzy sets have been proposed, among them type- 2 fuzzy sets and Z-numbers. The main objective of this paper is to study the relation between these two generalizations. As a result of this study, we show that if we apply data processing to Z-numbers, then we get type-2 sets of special type —that we call monotonic. We also prove that every monotonic… More >

Displaying 31-40 on page 4 of 47. Per Page