Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Research on Freezing of Gait Recognition Method Based on Variational Mode Decomposition

    Shoutao Li1,2,*, Ruyi Qu1, Yu Zhang1, Dingli Yu3

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2809-2823, 2023, DOI:10.32604/iasc.2023.036999

    Abstract Freezing of Gait (FOG) is the most common and disabling gait disorder in patients with Parkinson’s Disease (PD), which seriously affects the life quality and social function of patients. This paper proposes a FOG recognition method based on the Variational Mode Decomposition (VMD). Firstly, VMD instead of the traditional time-frequency analysis method to complete adaptive decomposition to the FOG signal. Secondly, to improve the accuracy and speed of the recognition algorithm, use the CART model as the base classifier and perform the feature dimension reduction. Then use the RUSBoost ensemble algorithm to solve the problem of unbalanced sample size and… More >

  • Open Access

    ARTICLE

    A Triplet-Branch Convolutional Neural Network for Part-Based Gait Recognition

    Sang-Soo Yeo1, Seungmin Rho2,*, Hyungjoon Kim3, Jibran Safdar4, Umar Zia5, Mehr Yahya Durrani5

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2027-2047, 2023, DOI:10.32604/csse.2023.040327

    Abstract Intelligent vision-based surveillance systems are designed to deal with the gigantic volume of videos captured in a particular environment to perform the interpretation of scenes in form of detection, tracking, monitoring, behavioral analysis, and retrievals. In addition to that, another evolving way of surveillance systems in a particular environment is human gait-based surveillance. In the existing research, several methodological frameworks are designed to use deep learning and traditional methods, nevertheless, the accuracies of these methods drop substantially when they are subjected to covariate conditions. These covariate variables disrupt the gait features and hence the recognition of subjects becomes difficult. To… More >

  • Open Access

    ARTICLE

    Feature Fusion Based Deep Transfer Learning Based Human Gait Classification Model

    C. S. S. Anupama1, Rafina Zakieva2, Afanasiy Sergin3, E. Laxmi Lydia4, Seifedine Kadry5,6,7, Chomyong Kim8, Yunyoung Nam8,*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1453-1468, 2023, DOI:10.32604/iasc.2023.038321

    Abstract Gait is a biological typical that defines the method by that people walk. Walking is the most significant performance which keeps our day-to-day life and physical condition. Surface electromyography (sEMG) is a weak bioelectric signal that portrays the functional state between the human muscles and nervous system to any extent. Gait classifiers dependent upon sEMG signals are extremely utilized in analysing muscle diseases and as a guide path for recovery treatment. Several approaches are established in the works for gait recognition utilizing conventional and deep learning (DL) approaches. This study designs an Enhanced Artificial Algae Algorithm with Hybrid Deep Learning… More >

  • Open Access

    ARTICLE

    Human Gait Recognition Based on Sequential Deep Learning and Best Features Selection

    Ch Avais Hanif1, Muhammad Ali Mughal1,*, Muhammad Attique Khan2, Usman Tariq3, Ye Jin Kim4, Jae-Hyuk Cha4

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5123-5140, 2023, DOI:10.32604/cmc.2023.038120

    Abstract Gait recognition is an active research area that uses a walking theme to identify the subject correctly. Human Gait Recognition (HGR) is performed without any cooperation from the individual. However, in practice, it remains a challenging task under diverse walking sequences due to the covariant factors such as normal walking and walking with wearing a coat. Researchers, over the years, have worked on successfully identifying subjects using different techniques, but there is still room for improvement in accuracy due to these covariant factors. This paper proposes an automated model-free framework for human gait recognition in this article. There are a… More >

  • Open Access

    ARTICLE

    GaitDONet: Gait Recognition Using Deep Features Optimization and Neural Network

    Muhammad Attique Khan1, Awais Khan1, Majed Alhaisoni2, Abdullah Alqahtani3, Ammar Armghan4, Sara A. Althubiti5, Fayadh Alenezi4, Senghour Mey6, Yunyoung Nam6,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5087-5103, 2023, DOI:10.32604/cmc.2023.033856

    Abstract Human gait recognition (HGR) is the process of identifying a subject (human) based on their walking pattern. Each subject is a unique walking pattern and cannot be simulated by other subjects. But, gait recognition is not easy and makes the system difficult if any object is carried by a subject, such as a bag or coat. This article proposes an automated architecture based on deep features optimization for HGR. To our knowledge, it is the first architecture in which features are fused using multiset canonical correlation analysis (MCCA). In the proposed method, original video frames are processed for all 11… More >

  • Open Access

    ARTICLE

    Human Personality Assessment Based on Gait Pattern Recognition Using Smartphone Sensors

    Kainat Ibrar1, Abdul Muiz Fayyaz1, Muhammad Attique Khan2, Majed Alhaisoni3, Usman Tariq4, Seob Jeon5, Yunyoung Nam6,*

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2351-2368, 2023, DOI:10.32604/csse.2023.036185

    Abstract Human personality assessment using gait pattern recognition is one of the most recent and exciting research domains. Gait is a person’s identity that can reflect reliable information about his mood, emotions, and substantial personality traits under scrutiny. This research focuses on recognizing key personality traits, including neuroticism, extraversion, openness to experience, agreeableness, and conscientiousness, in line with the big-five model of personality. We inferred personality traits based on the gait pattern recognition of individuals utilizing built-in smartphone sensors. For experimentation, we collected a novel dataset of 22 participants using an android application and further segmented it into six data chunks… More >

  • Open Access

    ARTICLE

    A Three-Dimensional Real-Time Gait-Based Age Detection System Using Machine Learning

    Muhammad Azhar1,*, Sehat Ullah1, Khalil Ullah2, Habib Shah3, Abdallah Namoun4, Khaliq Ur Rahman5

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 165-182, 2023, DOI:10.32604/cmc.2023.034605

    Abstract Human biometric analysis has gotten much attention due to its widespread use in different research areas, such as security, surveillance, health, human identification, and classification. Human gait is one of the key human traits that can identify and classify humans based on their age, gender, and ethnicity. Different approaches have been proposed for the estimation of human age based on gait so far. However, challenges are there, for which an efficient, low-cost technique or algorithm is needed. In this paper, we propose a three-dimensional real-time gait-based age detection system using a machine learning approach. The proposed system consists of training… More >

  • Open Access

    ARTICLE

    Sensor-Based Gait Analysis for Parkinson’s Disease Prediction

    Sathya Bama B*, Bevish Jinila Y

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 2085-2097, 2023, DOI:10.32604/iasc.2023.028481

    Abstract Parkinson’s disease is identified as one of the key neurodegenerative disorders occurring due to the damages present in the central nervous system. The cause of such brain damage seems to be fully explained in many research studies, but the understanding of its functionality remains to be impractical. Specifically, the development of a quantitative disease prediction model has evolved in recent decades. Moreover, accelerometer sensor-based gait analysis is accepted as an important tool for recognizing the walking behavior of the patients during the early prediction and diagnosis of Parkinson’s disease. This type of minimal infrastructure equipment helps in analyzing the Parkinson’s… More >

  • Open Access

    ARTICLE

    Gait Image Classification Using Deep Learning Models for Medical Diagnosis

    Pavitra Vasudevan1, R. Faerie Mattins1, S. Srivarshan1, Ashvath Narayanan1, Gayatri Wadhwani1, R. Parvathi1, R. Maheswari2,*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6039-6063, 2023, DOI:10.32604/cmc.2023.032331

    Abstract Gait refers to a person’s particular movements and stance while moving around. Although each person’s gait is unique and made up of a variety of tiny limb orientations and body positions, they all have common characteristics that help to define normalcy. Swiftly identifying such characteristics that are difficult to spot by the naked eye, can help in monitoring the elderly who require constant care and support. Analyzing silhouettes is the easiest way to assess and make any necessary adjustments for a smooth gait. It also becomes an important aspect of decision-making while analyzing and monitoring the progress of a patient… More >

  • Open Access

    ARTICLE

    Efficient Gait Analysis Using Deep Learning Techniques

    K. M. Monica, R. Parvathi*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6229-6249, 2023, DOI:10.32604/cmc.2023.032273

    Abstract Human Activity Recognition (HAR) has always been a difficult task to tackle. It is mainly used in security surveillance, human-computer interaction, and health care as an assistive or diagnostic technology in combination with other technologies such as the Internet of Things (IoT). Human Activity Recognition data can be recorded with the help of sensors, images, or smartphones. Recognizing daily routine-based human activities such as walking, standing, sitting, etc., could be a difficult statistical task to classify into categories and hence 2-dimensional Convolutional Neural Network (2D CNN) MODEL, Long Short Term Memory (LSTM) Model, Bidirectional long short-term memory (Bi-LSTM) are used… More >

Displaying 1-10 on page 1 of 24. Per Page