Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Deep Learning Model for Big Data Classification in Apache Spark Environment

    T. M. Nithya1,*, R. Umanesan2, T. Kalavathidevi3, C. Selvarathi4, A. Kavitha5

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2537-2547, 2023, DOI:10.32604/iasc.2022.028804

    Abstract Big data analytics is a popular research topic due to its applicability in various real time applications. The recent advent of machine learning and deep learning models can be applied to analyze big data with better performance. Since big data involves numerous features and necessitates high computational time, feature selection methodologies using metaheuristic optimization algorithms can be adopted to choose optimum set of features and thereby improves the overall classification performance. This study proposes a new sigmoid butterfly optimization method with an optimum gated recurrent unit (SBOA-OGRU) model for big data classification in Apache Spark. The SBOA-OGRU technique involves the… More >

  • Open Access

    REVIEW

    Deep Learning Applied to Computational Mechanics: A Comprehensive Review, State of the Art, and the Classics

    Loc Vu-Quoc1,*, Alexander Humer2

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1069-1343, 2023, DOI:10.32604/cmes.2023.028130

    Abstract Three recent breakthroughs due to AI in arts and science serve as motivation: An award winning digital image, protein folding, fast matrix multiplication. Many recent developments in artificial neural networks, particularly deep learning (DL), applied and relevant to computational mechanics (solid, fluids, finite-element technology) are reviewed in detail. Both hybrid and pure machine learning (ML) methods are discussed. Hybrid methods combine traditional PDE discretizations with ML methods either (1) to help model complex nonlinear constitutive relations, (2) to nonlinearly reduce the model order for efficient simulation (turbulence), or (3) to accelerate the simulation by predicting certain components in the traditional… More >

  • Open Access

    ARTICLE

    Detection of Alzheimer’s Disease Progression Using Integrated Deep Learning Approaches

    Jayashree Shetty1, Nisha P. Shetty1,*, Hrushikesh Kothikar1, Saleh Mowla1, Aiswarya Anand1, Veeraj Hegde2

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1345-1362, 2023, DOI:10.32604/iasc.2023.039206

    Abstract Alzheimer’s disease (AD) is an intensifying disorder that causes brain cells to degenerate early and destruct. Mild cognitive impairment (MCI) is one of the early signs of AD that interferes with people’s regular functioning and daily activities. The proposed work includes a deep learning approach with a multimodal recurrent neural network (RNN) to predict whether MCI leads to Alzheimer’s or not. The gated recurrent unit (GRU) RNN classifier is trained using individual and correlated features. Feature vectors are concatenated based on their correlation strength to improve prediction results. The feature vectors generated are given as the input to multiple different… More >

  • Open Access

    ARTICLE

    Deep Learning Based Energy Consumption Prediction on Internet of Things Environment

    S. Balaji*, S. Karthik

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 727-743, 2023, DOI:10.32604/iasc.2023.037409

    Abstract The creation of national energy strategy cannot proceed without accurate projections of future electricity consumption; this is because EC is intimately tied to other forms of energy, such as oil and natural gas. For the purpose of determining and bettering overall energy consumption, there is an urgent requirement for accurate monitoring and calculation of EC at the building level using cutting-edge technology such as data analytics and the internet of things (IoT). Soft computing is a subset of AI that tries to design procedures that are more accurate and reliable, and it has proven to be an effective tool for… More >

  • Open Access

    ARTICLE

    Artificial Intelligence in Internet of Things System for Predicting Water Quality in Aquaculture Fishponds

    Po-Yuan Yang1,*, Yu-Cheng Liao2, Fu-I Chou2

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 2861-2880, 2023, DOI:10.32604/csse.2023.036810

    Abstract Aquaculture has long been a critical economic sector in Taiwan. Since a key factor in aquaculture production efficiency is water quality, an effective means of monitoring the dissolved oxygen content (DOC) of aquaculture water is essential. This study developed an internet of things system for monitoring DOC by collecting essential data related to water quality. Artificial intelligence technology was used to construct a water quality prediction model for use in a complete system for managing water quality. Since aquaculture water quality depends on a continuous interaction among multiple factors, and the current state is correlated with the previous state, a… More >

  • Open Access

    ARTICLE

    Deep Learning Driven Arabic Text to Speech Synthesizer for Visually Challenged People

    Mrim M. Alnfiai1,2, Nabil Almalki1,3, Fahd N. Al-Wesabi4,*, Mesfer Alduhayyem5, Anwer Mustafa Hilal6, Manar Ahmed Hamza6

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2639-2652, 2023, DOI:10.32604/iasc.2023.034069

    Abstract Text-To-Speech (TTS) is a speech processing tool that is highly helpful for visually-challenged people. The TTS tool is applied to transform the texts into human-like sounds. However, it is highly challenging to accomplish the TTS outcomes for the non-diacritized text of the Arabic language since it has multiple unique features and rules. Some special characters like gemination and diacritic signs that correspondingly indicate consonant doubling and short vowels greatly impact the precise pronunciation of the Arabic language. But, such signs are not frequently used in the texts written in the Arabic language since its speakers and readers can guess them… More >

  • Open Access

    ARTICLE

    An Improved Time Feedforward Connections Recurrent Neural Networks

    Jin Wang1,2, Yongsong Zou1, Se-Jung Lim3,*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2743-2755, 2023, DOI:10.32604/iasc.2023.033869

    Abstract Recurrent Neural Networks (RNNs) have been widely applied to deal with temporal problems, such as flood forecasting and financial data processing. On the one hand, traditional RNNs models amplify the gradient issue due to the strict time serial dependency, making it difficult to realize a long-term memory function. On the other hand, RNNs cells are highly complex, which will significantly increase computational complexity and cause waste of computational resources during model training. In this paper, an improved Time Feedforward Connections Recurrent Neural Networks (TFC-RNNs) model was first proposed to address the gradient issue. A parallel branch was introduced for the… More >

  • Open Access

    ARTICLE

    Neural Network-Based State of Charge Estimation Method for Lithium-ion Batteries Based on Temperature

    Donghun Wang, Jonghyun Lee, Minchan Kim, Insoo Lee*

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 2025-2040, 2023, DOI:10.32604/iasc.2023.034749

    Abstract Lithium-ion batteries are commonly used in electric vehicles, mobile phones, and laptops. These batteries demonstrate several advantages, such as environmental friendliness, high energy density, and long life. However, battery overcharging and overdischarging may occur if the batteries are not monitored continuously. Overcharging causes fire and explosion casualties, and overdischarging causes a reduction in the battery capacity and life. In addition, the internal resistance of such batteries varies depending on their external temperature, electrolyte, cathode material, and other factors; the capacity of the batteries decreases with temperature. In this study, we develop a method for estimating the state of charge (SOC)… More >

  • Open Access

    ARTICLE

    Malicious URL Classification Using Artificial Fish Swarm Optimization and Deep Learning

    Anwer Mustafa Hilal1,2,*, Aisha Hassan Abdalla Hashim1, Heba G. Mohamed3, Mohamed K. Nour4, Mashael M. Asiri5, Ali M. Al-Sharafi6, Mahmoud Othman7, Abdelwahed Motwakel2

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 607-621, 2023, DOI:10.32604/cmc.2023.031371

    Abstract Cybersecurity-related solutions have become familiar since it ensures security and privacy against cyberattacks in this digital era. Malicious Uniform Resource Locators (URLs) can be embedded in email or Twitter and used to lure vulnerable internet users to implement malicious data in their systems. This may result in compromised security of the systems, scams, and other such cyberattacks. These attacks hijack huge quantities of the available data, incurring heavy financial loss. At the same time, Machine Learning (ML) and Deep Learning (DL) models paved the way for designing models that can detect malicious URLs accurately and classify them. With this motivation,… More >

  • Open Access

    ARTICLE

    Stacked Gated Recurrent Unit Classifier with CT Images for Liver Cancer Classification

    Mahmoud Ragab1,2,3,*, Jaber Alyami4,5

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2309-2322, 2023, DOI:10.32604/csse.2023.026877

    Abstract Liver cancer is one of the major diseases with increased mortality in recent years, across the globe. Manual detection of liver cancer is a tedious and laborious task due to which Computer Aided Diagnosis (CAD) models have been developed to detect the presence of liver cancer accurately and classify its stages. Besides, liver cancer segmentation outcome, using medical images, is employed in the assessment of tumor volume, further treatment plans, and response monitoring. Hence, there is a need exists to develop automated tools for liver cancer detection in a precise manner. With this motivation, the current study introduces an Intelligent… More >

Displaying 1-10 on page 1 of 24. Per Page