Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (70)
  • Open Access

    ARTICLE

    Improving Brain Tumor Classification with Deep Learning Using Synthetic Data

    Muhammed Mutlu Yapici1, Rukiye Karakis2,*, Kali Gurkahraman3

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5049-5067, 2023, DOI:10.32604/cmc.2023.035584

    Abstract Deep learning (DL) techniques, which do not need complex pre-processing and feature analysis, are used in many areas of medicine and achieve promising results. On the other hand, in medical studies, a limited dataset decreases the abstraction ability of the DL model. In this context, we aimed to produce synthetic brain images including three tumor types (glioma, meningioma, and pituitary), unlike traditional data augmentation methods, and classify them with DL. This study proposes a tumor classification model consisting of a Dense Convolutional Network (DenseNet121)-based DL model to prevent forgetting problems in deep networks and delay information flow between layers. By… More >

  • Open Access

    ARTICLE

    Transfer Learning-Based Semi-Supervised Generative Adversarial Network for Malaria Classification

    Ibrar Amin1, Saima Hassan1, Samir Brahim Belhaouari2,*, Muhammad Hamza Azam3

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6335-6349, 2023, DOI:10.32604/cmc.2023.033860

    Abstract Malaria is a lethal disease responsible for thousands of deaths worldwide every year. Manual methods of malaria diagnosis are time-consuming that require a great deal of human expertise and efforts. Computer-based automated diagnosis of diseases is progressively becoming popular. Although deep learning models show high performance in the medical field, it demands a large volume of data for training which is hard to acquire for medical problems. Similarly, labeling of medical images can be done with the help of medical experts only. Several recent studies have utilized deep learning models to develop efficient malaria diagnostic system, which showed promising results.… More >

  • Open Access

    ARTICLE

    Generating Time-Series Data Using Generative Adversarial Networks for Mobility Demand Prediction

    Subhajit Chatterjee1, Yung-Cheol Byun2,*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5507-5525, 2023, DOI:10.32604/cmc.2023.032843

    Abstract The increasing penetration rate of electric kickboard vehicles has been popularized and promoted primarily because of its clean and efficient features. Electric kickboards are gradually growing in popularity in tourist and education-centric localities. In the upcoming arrival of electric kickboard vehicles, deploying a customer rental service is essential. Due to its free-floating nature, the shared electric kickboard is a common and practical means of transportation. Relocation plans for shared electric kickboards are required to increase the quality of service, and forecasting demand for their use in a specific region is crucial. Predicting demand accurately with small data is troublesome. Extensive… More >

  • Open Access

    ARTICLE

    Using Hybrid Penalty and Gated Linear Units to Improve Wasserstein Generative Adversarial Networks for Single-Channel Speech Enhancement

    Xiaojun Zhu1,2,3, Heming Huang1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2155-2172, 2023, DOI:10.32604/cmes.2023.021453

    Abstract Recently, speech enhancement methods based on Generative Adversarial Networks have achieved good performance in time-domain noisy signals. However, the training of Generative Adversarial Networks has such problems as convergence difficulty, model collapse, etc. In this work, an end-to-end speech enhancement model based on Wasserstein Generative Adversarial Networks is proposed, and some improvements have been made in order to get faster convergence speed and better generated speech quality. Specifically, in the generator coding part, each convolution layer adopts different convolution kernel sizes to conduct convolution operations for obtaining speech coding information from multiple scales; a gated linear unit is introduced to… More >

  • Open Access

    ARTICLE

    Effective and Efficient Video Compression by the Deep Learning Techniques

    Karthick Panneerselvam1,2,*, K. Mahesh1, V. L. Helen Josephine3, A. Ranjith Kumar2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1047-1061, 2023, DOI:10.32604/csse.2023.030513

    Abstract Deep learning has reached many successes in Video Processing. Video has become a growing important part of our daily digital interactions. The advancement of better resolution content and the large volume offers serious challenges to the goal of receiving, distributing, compressing and revealing high-quality video content. In this paper we propose a novel Effective and Efficient video compression by the Deep Learning framework based on the flask, which creatively combines the Deep Learning Techniques on Convolutional Neural Networks (CNN) and Generative Adversarial Networks (GAN). The video compression method involves the layers are divided into different groups for data processing, using… More >

  • Open Access

    ARTICLE

    Chained Dual-Generative Adversarial Network: A Generalized Defense Against Adversarial Attacks

    Amitoj Bir Singh1, Lalit Kumar Awasthi1, Urvashi1, Mohammad Shorfuzzaman2, Abdulmajeed Alsufyani2, Mueen Uddin3,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2541-2555, 2023, DOI:10.32604/cmc.2023.032795

    Abstract Neural networks play a significant role in the field of image classification. When an input image is modified by adversarial attacks, the changes are imperceptible to the human eye, but it still leads to misclassification of the images. Researchers have demonstrated these attacks to make production self-driving cars misclassify Stop Road signs as 45 Miles Per Hour (MPH) road signs and a turtle being misclassified as AK47. Three primary types of defense approaches exist which can safeguard against such attacks i.e., Gradient Masking, Robust Optimization, and Adversarial Example Detection. Very few approaches use Generative Adversarial Networks (GAN) for Defense against… More >

  • Open Access

    ARTICLE

    Developing a Secure Framework Using Feature Selection and Attack Detection Technique

    Mahima Dahiya*, Nitin Nitin

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4183-4201, 2023, DOI:10.32604/cmc.2023.032430

    Abstract Intrusion detection is critical to guaranteeing the safety of the data in the network. Even though, since Internet commerce has grown at a breakneck pace, network traffic kinds are rising daily, and network behavior characteristics are becoming increasingly complicated, posing significant hurdles to intrusion detection. The challenges in terms of false positives, false negatives, low detection accuracy, high running time, adversarial attacks, uncertain attacks, etc. lead to insecure Intrusion Detection System (IDS). To offset the existing challenge, the work has developed a secure Data Mining Intrusion detection system (DataMIDS) framework using Functional Perturbation (FP) feature selection and Bengio Nesterov Momentum-based… More >

  • Open Access

    ARTICLE

    Enhancing CNN for Forensics Age Estimation Using CGAN and Pseudo-Labelling

    Sultan Alkaabi1,*, Salman Yussof1, Sameera Al-Mulla2

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2499-2516, 2023, DOI:10.32604/cmc.2023.029914

    Abstract Age estimation using forensics odontology is an important process in identifying victims in criminal or mass disaster cases. Traditionally, this process is done manually by human expert. However, the speed and accuracy may vary depending on the expertise level of the human expert and other human factors such as level of fatigue and attentiveness. To improve the recognition speed and consistency, researchers have proposed automated age estimation using deep learning techniques such as Convolutional Neural Network (CNN). CNN requires many training images to obtain high percentage of recognition accuracy. Unfortunately, it is very difficult to get large number of samples… More >

  • Open Access

    ARTICLE

    Image Color Rendering Based on Hinge-Cross-Entropy GAN in Internet of Medical Things

    Hong’an Li1, Min Zhang1,*, Dufeng Chen2, Jing Zhang1, Meng Yang3, Zhanli Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 779-794, 2023, DOI:10.32604/cmes.2022.022369

    Abstract Computer-aided diagnosis based on image color rendering promotes medical image analysis and doctor-patient communication by highlighting important information of medical diagnosis. To overcome the limitations of the color rendering method based on deep learning, such as poor model stability, poor rendering quality, fuzzy boundaries and crossed color boundaries, we propose a novel hinge-cross-entropy generative adversarial network (HCEGAN). The self-attention mechanism was added and improved to focus on the important information of the image. And the hinge-cross-entropy loss function was used to stabilize the training process of GAN models. In this study, we implement the HCEGAN model for image color rendering… More > Graphic Abstract

    Image Color Rendering Based on Hinge-Cross-Entropy GAN in Internet of Medical Things

  • Open Access

    ARTICLE

    Multi-Level Deep Generative Adversarial Networks for Brain Tumor Classification on Magnetic Resonance Images

    Abdullah A. Asiri1, Ahmad Shaf2,*, Tariq Ali2, Muhammad Aamir2, Ali Usman2, Muhammad Irfan3, Hassan A. Alshamrani1, Khlood M. Mehdar4, Osama M. Alshehri5, Samar M. Alqhtani6

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 127-143, 2023, DOI:10.32604/iasc.2023.032391

    Abstract The brain tumor is an abnormal and hysterical growth of brain tissues, and the leading cause of death affected patients worldwide. Even in this technology-based arena, brain tumor images with proper labeling and acquisition still have a problem with the accurate and reliable generation of realistic images of brain tumors that are completely different from the original ones. The artificially created medical image data would help improve the learning ability of physicians and other computer-aided systems for the generation of augmented data. To overcome the highlighted issue, a Generative Adversarial Network (GAN) deep learning technique in which two neural networks… More >

Displaying 21-30 on page 3 of 70. Per Page