Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (89)
  • Open Access

    ARTICLE

    Integrated Generative Adversarial Network and XGBoost for Anomaly Processing of Massive Data Flow in Dispatch Automation Systems

    Wenlu Ji1, Yingqi Liao1,*, Liudong Zhang2

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2825-2848, 2023, DOI:10.32604/iasc.2023.039618

    Abstract Existing power anomaly detection is mainly based on a pattern matching algorithm. However, this method requires a lot of manual work, is time-consuming, and cannot detect unknown anomalies. Moreover, a large amount of labeled anomaly data is required in machine learning-based anomaly detection. Therefore, this paper proposes the application of a generative adversarial network (GAN) to massive data stream anomaly identification, diagnosis, and prediction in power dispatching automation systems. Firstly, to address the problem of the small amount of anomaly data, a GAN is used to obtain reliable labeled datasets for fault diagnosis model training… More >

  • Open Access

    ARTICLE

    A Novel S-Box Generation Methodology Based on the Optimized GAN Model

    Runlian Zhang1,*, Rui Shu1, Yongzhuang Wei1, Hailong Zhang2, Xiaonian Wu1

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1911-1927, 2023, DOI:10.32604/cmc.2023.041187

    Abstract S-boxes can be the core component of block ciphers, and how to efficiently generate S-boxes with strong cryptographic properties appears to be an important task in the design of block ciphers. In this work, an optimized model based on the generative adversarial network (GAN) is proposed to generate 8-bit S-boxes. The central idea of this optimized model is to use loss function constraints for GAN. More specially, the Advanced Encryption Standard (AES) S-box is used to construct the sample dataset via the affine equivalence property. Then, three models are respectively built and cross-trained to generate… More >

  • Open Access

    ARTICLE

    Single Image Desnow Based on Vision Transformer and Conditional Generative Adversarial Network for Internet of Vehicles

    Bingcai Wei, Di Wang, Zhuang Wang, Liye Zhang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1975-1988, 2023, DOI:10.32604/cmes.2023.027727

    Abstract With the increasing popularity of artificial intelligence applications, machine learning is also playing an increasingly important role in the Internet of Things (IoT) and the Internet of Vehicles (IoV). As an essential part of the IoV, smart transportation relies heavily on information obtained from images. However, inclement weather, such as snowy weather, negatively impacts the process and can hinder the regular operation of imaging equipment and the acquisition of conventional image information. Not only that, but the snow also makes intelligent transportation systems make the wrong judgment of road conditions and the entire system of… More > Graphic Abstract

    Single Image Desnow Based on Vision Transformer and Conditional Generative Adversarial Network for Internet of Vehicles

  • Open Access

    ARTICLE

    ECGAN: Translate Real World to Cartoon Style Using Enhanced Cartoon Generative Adversarial Network

    Yixin Tang*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 1195-1212, 2023, DOI:10.32604/cmc.2023.039182

    Abstract Visual illustration transformation from real-world to cartoon images is one of the famous and challenging tasks in computer vision. Image-to-image translation from real-world to cartoon domains poses issues such as a lack of paired training samples, lack of good image translation, low feature extraction from the previous domain images, and lack of high-quality image translation from the traditional generator algorithms. To solve the above-mentioned issues, paired independent model, high-quality dataset, Bayesian-based feature extractor, and an improved generator must be proposed. In this study, we propose a high-quality dataset to reduce the effect of paired training… More >

  • Open Access

    ARTICLE

    Text-to-Sketch Synthesis via Adversarial Network

    Jason Elroy Martis1, Sannidhan Manjaya Shetty2,*, Manas Ranjan Pradhan3, Usha Desai4, Biswaranjan Acharya5,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 915-938, 2023, DOI:10.32604/cmc.2023.038847

    Abstract In the past, sketches were a standard technique used for recognizing offenders and have remained a valuable tool for law enforcement and social security purposes. However, relying on eyewitness observations can lead to discrepancies in the depictions of the sketch, depending on the experience and skills of the sketch artist. With the emergence of modern technologies such as Generative Adversarial Networks (GANs), generating images using verbal and textual cues is now possible, resulting in more accurate sketch depictions. In this study, we propose an adversarial network that generates human facial sketches using such cues provided More >

  • Open Access

    ARTICLE

    OffSig-SinGAN: A Deep Learning-Based Image Augmentation Model for Offline Signature Verification

    M. Muzaffar Hameed1,2, Rodina Ahmad1,*, Laiha Mat Kiah1, Ghulam Murtaza3, Noman Mazhar1

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 1267-1289, 2023, DOI:10.32604/cmc.2023.035063

    Abstract Offline signature verification (OfSV) is essential in preventing the falsification of documents. Deep learning (DL) based OfSVs require a high number of signature images to attain acceptable performance. However, a limited number of signature samples are available to train these models in a real-world scenario. Several researchers have proposed models to augment new signature images by applying various transformations. Others, on the other hand, have used human neuromotor and cognitive-inspired augmentation models to address the demand for more signature samples. Hence, augmenting a sufficient number of signatures with variations is still a challenging task. This… More >

  • Open Access

    ARTICLE

    Stock Market Prediction Using Generative Adversarial Networks (GANs): Hybrid Intelligent Model

    Fares Abdulhafidh Dael1,*, Ömer Çağrı Yavuz2, Uğur Yavuz1

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 19-35, 2023, DOI:10.32604/csse.2023.037903

    Abstract The key indication of a nation’s economic development and strength is the stock market. Inflation and economic expansion affect the volatility of the stock market. Given the multitude of factors, predicting stock prices is intrinsically challenging. Predicting the movement of stock price indexes is a difficult component of predicting financial time series. Accurately predicting the price movement of stocks can result in financial advantages for investors. Due to the complexity of stock market data, it is extremely challenging to create accurate forecasting models. Using machine learning and other algorithms to anticipate stock prices is an More >

  • Open Access

    ARTICLE

    Tight Sandstone Image Augmentation for Image Identification Using Deep Learning

    Dongsheng Li, Chunsheng Li*, Kejia Zhang, Tao Liu, Fang Liu, Jingsong Yin, Mingyue Liao

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1209-1231, 2023, DOI:10.32604/csse.2023.034395

    Abstract Intelligent identification of sandstone slice images using deep learning technology is the development trend of mineral identification, and accurate mineral particle segmentation is the most critical step for intelligent identification. A typical identification model requires many training samples to learn as many distinguishable features as possible. However, limited by the difficulty of data acquisition, the high cost of labeling, and privacy protection, this has led to a sparse sample number and cannot meet the training requirements of deep learning image identification models. In order to increase the number of samples and improve the training effect… More >

  • Open Access

    ARTICLE

    APST-Flow: A Reversible Network-Based Artistic Painting Style Transfer Method

    Meng Wang*, Yixuan Shao, Haipeng Liu

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5229-5254, 2023, DOI:10.32604/cmc.2023.036631

    Abstract In recent years, deep generative models have been successfully applied to perform artistic painting style transfer (APST). The difficulties might lie in the loss of reconstructing spatial details and the inefficiency of model convergence caused by the irreversible en-decoder methodology of the existing models. Aiming to this, this paper proposes a Flow-based architecture with both the en-decoder sharing a reversible network configuration. The proposed APST-Flow can efficiently reduce model uncertainty via a compact analysis-synthesis methodology, thereby the generalization performance and the convergence stability are improved. For the generator, a Flow-based network using Wavelet additive coupling… More >

  • Open Access

    ARTICLE

    Physics-Informed AI Surrogates for Day-Ahead Wind Power Probabilistic Forecasting with Incomplete Data for Smart Grid in Smart Cities

    Zeyu Wu1, Bo Sun1,2, Qiang Feng2,*, Zili Wang1, Junlin Pan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 527-554, 2023, DOI:10.32604/cmes.2023.027124

    Abstract Due to the high inherent uncertainty of renewable energy, probabilistic day-ahead wind power forecasting is crucial for modeling and controlling the uncertainty of renewable energy smart grids in smart cities. However, the accuracy and reliability of high-resolution day-ahead wind power forecasting are constrained by unreliable local weather prediction and incomplete power generation data. This article proposes a physics-informed artificial intelligence (AI) surrogates method to augment the incomplete dataset and quantify its uncertainty to improve wind power forecasting performance. The incomplete dataset, built with numerical weather prediction data, historical wind power generation, and weather factors data,… More > Graphic Abstract

    Physics-Informed AI Surrogates for Day-Ahead Wind Power Probabilistic Forecasting with Incomplete Data for Smart Grid in Smart Cities

Displaying 21-30 on page 3 of 89. Per Page