Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (36)
  • Open Access

    ARTICLE

    Isolation of Mesenchymal Stem Cells from Bone Marrow with Distinct Differentiation and Engraftment in Developing Mice

    F. Li1, X. Wang1, X. Liao1, C. Niyibizi1

    Molecular & Cellular Biomechanics, Vol.3, No.4, pp. 167-168, 2006, DOI:10.32604/mcb.2006.003.167

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Tissue Engineered Nanofibrous Vascular Graft

    C. Hashi1, S. Li1

    Molecular & Cellular Biomechanics, Vol.3, No.4, pp. 135-136, 2006, DOI:10.32604/mcb.2006.003.135

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Cellulose Nanocrystals versus Polyethylene Glycol as Toughening Agents for Poly(Lactic Acid)-Poly(Acrylic Acid) Graft Copolymer

    Jose Luis Orellana, Michael Mauhar, Christopher L. Kitchens*

    Journal of Renewable Materials, Vol.4, No.5, pp. 340-350, 2016, DOI:10.7569/JRM.2016.634126

    Abstract Polylactic acid (PLA) is one of the most widely used biodegradable polymers due to the ability to synthesize it economically at industrial scale and its favorable properties for many consumer products. However, the rigid nature of PLA is not desirable for specific applications, requiring the incorporation of effective bioderived additives in order to enhance the PLA toughness and broaden applications. In this work, PLA was modified by graft polymerization of polyacrylic acid (PLA-g-PAA) to increase the hydrophilicity to promote compatibilization of cellulose nanocrystals (CNCs) or high molecular polyethylene glycol (PEG). CNCs were found to act as a nucleating agent for… More >

  • Open Access

    ARTICLE

    Hemodynamic Based Surgical Decision on Sequential Graft and Y-Type Graft in Coronary Artery Bypass Grafting

    Xi Zhao, Youjun Liu∗,†, Wenxin Wang

    Molecular & Cellular Biomechanics, Vol.12, No.1, pp. 49-66, 2015, DOI:10.3970/mcb.2015.012.049

    Abstract Purpose: Sequential graft and Y-type graft are two different surgical procedures in coronary artery bypass grafting (CABG). The hemodynamic environment of them are different, that may cause different short-term surgical result and long-term patency. In this study, the short-term and long-term result of sequential and Y-type graft was discussed by comparing the hemodynamics of them. Materials and Methods: Two postoperative 3-dimensional (3D) models were built by applying different graft on a patient-specific 3D model with serious stenosis. Then zero-dimensional (0D)/3D coupled simulation was carried out by coupling the postoperative 3D models with a 0D lumped parameter model of the cardiovascular… More >

  • Open Access

    ARTICLE

    In Vitro Measurement and Calculation of Drag Force on Iliac Limb Stentgraft in a Compliant Arterial Wall Model

    A. Sinha Roy*, K. West, R. S. Rontala1, R. K. Greenberg2, R. K. Banerje1,‡

    Molecular & Cellular Biomechanics, Vol.4, No.4, pp. 211-226, 2007, DOI:10.3970/mcb.2007.004.211

    Abstract Interventional treatment of aortic aneurysms using endovascular stentgrafting is a minimally invasive technique. Following device implantation, transient drag forces act on the stentgraft. When the drag force exceeds the fixation force, complications like stentgraft migration, endoleaks and stentgraft failure occur. In such a scenario the device becomes unstable, causing concern over the long-term durability of endovascular repairs. The objective of this study is: 1) to measure the drag force on iliac limb stentgraft, having a distal diameter that is half the size of the proximal end, in an in vitro experiment; 2) to calculate the drag force using blood flow--compliant… More >

  • Open Access

    ARTICLE

    The Study of the Graft Hemodynamics with Different Instant Patency in Coronary Artery Bypassing Grafting

    Zhou Zhao1, Boyan Mao2, Youjun Liu2, Haisheng Yang2, Yu Chen1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.2, pp. 229-245, 2018, DOI: 10.31614/cmes.2018.04192

    Abstract In coronary artery bypass grafting (CABG), graft’s poor instant patency may lead to an abnormal hemodynamic environment in anastomosis, which could further cause graft failure after the surgery. This paper investigates the graft hemodynamics with different instant patency, and explores its effect on graft postoperative efficiency. Six CABG 0D/3D coupling multi-scale models which used left internal mammary artery (LIMA) and saphenous vein (SVG) as grafts were constructed. Different types of grafts were examined in the models, including normal grafts, grafts with competitive flow and grafts with anastomotic stenosis. Simulation results indicated that comparing with SVG grafts, there was a greater… More >

Displaying 31-40 on page 4 of 36. Per Page