Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (73)
  • Open Access

    ARTICLE

    Numerical Simulation of Damage Behavior in Graphene-Reinforced Aluminum Matrix Composite Armatures under Multi-Physical Field Coupling

    Junwen Huo, Haicheng Liang, Weiye Dong, Xiaoming Du*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.073285 - 09 December 2025

    Abstract With the rapid advancement of electromagnetic launch technology, enhancing the structural stability and thermal resistance of armatures has become essential for improving the overall efficiency and reliability of railgun systems. Traditional aluminum alloy armatures often suffer from severe ablation, deformation, and uneven current distribution under high pulsed currents, which limit their performance and service life. To address these challenges, this study employs the Johnson–Cook constitutive model and the finite element method to develop armature models of aluminum matrix composites with varying heterogeneous graphene volume fractions. The temperature, stress, and strain of the armatures during operation… More >

  • Open Access

    ARTICLE

    Structural and Helix Reversal Defects of Carbon Nanosprings: A Molecular Dynamics Study

    Alexander V. Savin1,2, Elena A. Korznikova3,4, Sergey V. Dmitriev5,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.072786 - 09 December 2025

    Abstract Due to their chiral structure, carbon nanosprings possess unique properties that are promising for nanotechnology applications. The structural transformations of carbon nanosprings in the form of spiral macromolecules derived from planar coronene and kekulene molecules (graphene helicoids and spiral nanoribbons) are analyzed using molecular dynamics simulations. The interatomic interactions are described by a force field including valence bonds, bond angles, torsional and dihedral angles, as well as van der Waals interactions. While the tension/compression of such nanosprings has been analyzed in the literature, this study investigates other modes of deformation, including bending and twisting. Depending… More >

  • Open Access

    ARTICLE

    Surface Wettability and Boiling Heat Transfer Enhancement in Microchannels Using Graphene Nanoplatelet and Multi-Walled Carbon Nanotube Coatings

    Ghinwa Al Mimar1, Natrah Kamaruzaman1,*, Kamil Talib Alkhateeb2

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1933-1956, 2025, DOI:10.32604/fhmt.2025.070118 - 31 December 2025

    Abstract The pivotal role microchannels play in the thermal management of electronic components has, in recent decades, prompted extensive research into methods for enhancing their heat transfer performance. Among these methods, surface wettability modification was found to be highly effective owing to its significant influence on boiling dynamics and heat transfer mechanisms. In this study, we modified surface wettability using a nanocomposite coating composed of graphene nano plate (GNPs) and multi-walled carbon nanotubes (MWCNT) and then examined how the modification affected the transfer of boiling heat in microchannels. The resultant heat transfer coefficients for hydrophilic and… More >

  • Open Access

    REVIEW

    Research Progress and Applications of Carbon Nanotubes, Black Phosphorus, and Graphene-Based Nanomaterials: Insights from Computational Simulations

    Qinghua Qin*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1-39, 2025, DOI:10.32604/cmc.2025.067293 - 29 August 2025

    Abstract Carbon nanotubes (CNTs), black phosphorus nanotubes (BPNTs), and graphene derivatives exhibit significant promise for applications in nano-electromechanical systems (NEMS), energy storage, and sensing technologies due to their exceptional mechanical, electrical, and thermal properties. This review summarizes recent advances in understanding the dynamic behaviors of these nanomaterials, with a particular focus on insights gained from molecular dynamics (MD) simulations. Key areas discussed include the oscillatory and rotational dynamics of double-walled CNTs, fabrication and stability challenges associated with BPNTs, and the emerging potential of graphyne nanotubes (GNTs). The review also outlines design strategies for enhancing nanodevice performance More >

  • Open Access

    ARTICLE

    Synergistic Effect of Zinc Oxide, Magnesium Oxide and Graphene Nanomaterials on Fusarium oxysporum-Inoculated Tomato Plants

    Alejandra Sánchez-Reyna1, Yolanda González-García2, Ángel Gabriel Alpuche-Solís3, Gregorio Cadenas-Pliego4, Adalberto Benavides-Mendoza5,6, Antonio Juárez-Maldonado6,7,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.7, pp. 2097-2116, 2025, DOI:10.32604/phyton.2025.067092 - 31 July 2025

    Abstract Tomato is an economically important crop that is susceptible to biotic and abiotic stresses, situations that negatively affect the crop cycle. Biotic stress is caused by phytopathogens such as Fusarium oxysporum f. sp. lycopersici (FOL), responsible for vascular wilt, a disease that causes economic losses of up to 100% in crops of interest. Nanomaterials represent an area of opportunity for pathogen control through stimulations that modify the plant development program, achieving greater adaptation and tolerance to stress. The aim of this study was to evaluate the antimicrobial capacity of the nanoparticles and the concentrations used in tomato… More >

  • Open Access

    ARTICLE

    Nonlinear Post-Buckling Stability of Graphene Origami-Enabled Auxetic Metamaterials Plates

    Salwa A. Mohamed1, Mohamed A. Eltaher2,3,*, Nazira Mohamed1, Rasha Abo-bakr4

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 515-538, 2025, DOI:10.32604/cmes.2025.061897 - 11 April 2025

    Abstract The nonlinear post-buckling response of functionally graded (FG) copper matrix plates enforced by graphene origami auxetic metamaterials (GOAMs) is investigated in the current work. The auxetic material properties of the plate are controlled by graphene content and the degree of origami folding, which are graded across the thickness of the plate. The material properties of the GOAM plate are evaluated using genetic micro-mechanical models. Governing nonlinear eigenvalue problems for the post-buckling response of the GOAM composite plate are derived using the virtual work principle and a four-variable nonlinear shear deformation theory. A novel differential quadrature More >

  • Open Access

    ARTICLE

    Advanced Poly(Lactic Acid)/Thermoplastic Polyurethane Blend-Based Nanocomposites with Carbon Nanotubes and Graphene Nanoplatelets for Shape Memory

    Nayara Koba de Moura Morgado, Guilherme Ferreira de Melo Morgado, Erick Gabriel Ribeiro dos Anjos, Fabio Roberto Passador*

    Journal of Polymer Materials, Vol.42, No.1, pp. 95-110, 2025, DOI:10.32604/jpm.2025.059364 - 27 March 2025

    Abstract The continuous improvement in patient care and recovery is driving the development of innovative materials for medical applications. Medical sutures, essential for securing implants and closing deep wounds, have evolved to incorporate smart materials capable of responding to various stimuli. This study explores the potential of thermoresponsive sutures, made from shape memory materials, that contract upon heating to bring loose stitches closer together, promoting optimal wound closure. We developed nanocomposites based on a blend of poly(lactic acid) (PLA) and thermoplastic polyurethane (TPU)—biopolymers that inherently exhibit shape memory—enhanced with carbon nanotubes (CNT) and graphene nanoplatelets (GN)… More >

  • Open Access

    ARTICLE

    Infrared and Microwave Radiation Assisted Self-Healing Property of Exfoliated-Graphene Incorporated Styrene-Isoprene-Styrene Nanocomposites

    Shilpi Tiwari*, Manjari Srivastava, Dibyendu S. Bag*

    Journal of Polymer Materials, Vol.42, No.1, pp. 187-204, 2025, DOI:10.32604/jpm.2025.057322 - 27 March 2025

    Abstract Smart materials with self-healing properties are highly desired. This study investigates graphene-incorporated styrene-isoprene-styrene (SIS) nanocomposites for their self-healing property assisted by Infrared (IR) and microwave radiation. The good thermal conductivity and energy-absorbing capacity of graphene offer self-healing capability to SIS/GnP nanocomposites due to their exposure to IR and microwave radiation. The absorbed energy in graphene is transferred to the SIS matrix, facilitating the diffusion, re-entanglement, and restoration of the SIS polymer chains, resulting in multiple times self-healing capabilities using various external stimuli. All SIS/GnP nanocomposite samples exhibit self-healing behavior, and the healing efficiency rises with… More > Graphic Abstract

    Infrared and Microwave Radiation Assisted Self-Healing Property of Exfoliated-Graphene Incorporated Styrene-Isoprene-Styrene Nanocomposites

  • Open Access

    ARTICLE

    Experimental Study on a Hybrid Battery Thermal Management System Combining Oscillating Heat Pipe and Liquid Cooling

    Hongkun Lu1,2,*, M. M. Noor2,3,4,*, K. Kadirgama2

    Frontiers in Heat and Mass Transfer, Vol.23, No.1, pp. 299-324, 2025, DOI:10.32604/fhmt.2024.059871 - 26 February 2025

    Abstract To improve the thermal performance and temperature uniformity of battery pack, this paper presents a novel battery thermal management system (BTMS) that integrates oscillating heat pipe (OHP) technology with liquid cooling. The primary innovation of the new hybrid BTMS lies in the use of an OHP with vertically arranged evaporator and condenser, enabling dual heat transfer pathways through liquid cooling plate and OHP. This study experimentally investigates the performance characteristics of the ⊥-shaped OHP and hybrid BTMS. Results show that lower filling ratios significantly enhance the OHP’s startup performance but reduce operational stability, with optimal… More >

  • Open Access

    ARTICLE

    Graphene Oxide and Moringa oleifera Seed Oil Incorporated into Gelatin-Based Films: A Novel Active Food Packaging Material

    María Fernanda Cardona Lunar1, Ramón Ordoñez2, Heidi Fonseca Florido3, Joaquín Hernández-Fernández4,5,6, Rodrigo Ortega-Toro1,*

    Journal of Renewable Materials, Vol.13, No.2, pp. 311-327, 2025, DOI:10.32604/jrm.2024.056639 - 20 February 2025

    Abstract The extensive use of polymeric materials in single-use packaging has driven the need to develop biodegradable alternatives. This study investigates the incorporation of graphene oxide (GO) and Moringa oleifera seed oil (MOSO) into a gelatin matrix to create polymer films and evaluate their potential as active packaging materials. The properties of these films were evaluated using structural, thermal, mechanical, optical, and physicochemical methods to determine their suitability for food packaging applications. The results showed that GO and MOSO were homogeneously dispersed in the gelatin matrix, forming colloidal particles (around 5 µm in diameter). The addition… More > Graphic Abstract

    Graphene Oxide and <i>Moringa oleifera</i> Seed Oil Incorporated into Gelatin-Based Films: A Novel Active Food Packaging Material

Displaying 1-10 on page 1 of 73. Per Page