Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (55)
  • Open Access

    ARTICLE

    Advanced Nanocomposite Arabic Gum Polyacrylic Acid Hydrogels for Flexible Supercapacitors

    Borhan Albiss*, Asala Saleh

    Journal of Renewable Materials, Vol.12, No.7, pp. 1219-1236, 2024, DOI:10.32604/jrm.2024.050685

    Abstract In this work, the fabrication and characterization of the nanocomposite hydrogel, as a solid electrode in electrochemical cell and gel electrolyte material using Indium titanium oxide/polyethylene terephthalate (ITO/PET) flexible substrate for double-layer supercapacitors have been reported. The nanocomposite hydrogel composed of Arabic gum (AG), Acrylic acid (AA), reduced graphene oxide (RGO), and silver nanoparticles (AgNPs) was fabricated via a physical cross-linked polymerization reaction, in which the ascorbic acid was used as a reducing agent to generate AgNPs and to convert Graphene oxide (GO) to RGO during the polymerization reaction. The morphology and structural characteristics of… More > Graphic Abstract

    Advanced Nanocomposite Arabic Gum Polyacrylic Acid Hydrogels for Flexible Supercapacitors

  • Open Access

    ARTICLE

    Investigation of Projectile Impact Behaviors of Graphene Aerogel Using Molecular Dynamics Simulations

    Xinyu Zhang1, Wenjie Xia2, Yang Wang3,4, Liang Wang1,*, Xiaofeng Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3047-3061, 2024, DOI:10.32604/cmes.2023.046922

    Abstract Graphene aerogel (GA), as a novel solid material, has shown great potential in engineering applications due to its unique mechanical properties. In this study, the mechanical performance of GA under high-velocity projectile impacts is thoroughly investigated using full-atomic molecular dynamics (MD) simulations. The study results show that the porous structure and density are key factors determining the mechanical response of GA under impact loading. Specifically, the impact-induced penetration of the projectile leads to the collapse of the pore structure, causing stretching and subsequent rupture of covalent bonds in graphene sheets. Moreover, the effects of temperature More >

  • Open Access

    ARTICLE

    Radiative Blood-Based Hybrid Copper-Graphene Nanoliquid Flows along a Source-Heated Leaning Cylinder

    Siti Nur Ainsyah Ghani1, Noor Fadiya Mohd Noor1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 1017-1037, 2024, DOI:10.32604/cmes.2023.031372

    Abstract Variant graphene, graphene oxides (GO), and graphene nanoplatelets (GNP) dispersed in blood-based copper (Cu) nanoliquids over a leaning permeable cylinder are the focus of this study. These forms of graphene are highly beneficial in the biological and medical fields for cancer therapy, anti-infection measures, and drug delivery. The non-Newtonian Sutterby (blood-based) hybrid nanoliquid flows are generalized within the context of the Tiwari-Das model to simulate the effects of radiation and heating sources. The governing partial differential equations are reformulated into a nonlinear set of ordinary differential equations using similar transformational expressions. These equations are then… More >

  • Open Access

    ARTICLE

    Enhanced Mechanical and Electrical Properties of Styrene Butadiene Rubber Nanocomposites with Graphene Platelet Nano-powder

    ARUN KUMAR M, JAYAKUMARI LS*, RAMJI CHANDRAN

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 141-156, 2023, DOI:10.32381/JPM.2023.40.3-4.2

    Abstract Nanocomposites are very important materials because it imparts superior properties than other composites with low level of filler loading. Styrene butadiene rubber (SBR) is a non-polar rubber which acts as an insulator and has low electrical conductivity. Graphene platelet nano-powder from 0.1 to 1.25 phr level is incorporated into SBR rubber in order to improve the electrical properties. Comparative studies on electrical and mechanical properties of styrene butadiene rubber with graphene platelet nano-powder (GPN) by varying the filler content are made. The incorporation of Graphene platelet nano-powder increases the electrical conductivity in styrene butadiene rubber. More >

  • Open Access

    ARTICLE

    Study of Galvanic Charging-Discharging Properties of Graphene Nanoplatelets Incorporated Epoxy-Carbon Fabric Composites

    HADIMANI SHIVAKUMAR1, GURUMURTHY G. D.1, BOMMEGOWDA K. B.2, S. PARAMESHWARA3

    Journal of Polymer Materials, Vol.40, No.1-2, pp. 93-103, 2023, DOI:10.32381/JPM.2023.40.1-2.8

    Abstract Polymer composites are increasing in demand in energy storage applications including in the electronic as well as electrical industries due to the ease of processing of these materials with associated advantages like light weight, corrosion resistance, and high mechanical strength. In this investigation, efforts are made to enhance the charging and discharging properties of epoxy/carbon fabric composite by the addition of graphene nanoplatelets (GNPs) into the epoxy/ carbon matrix. The performance of the composites with graphene platelets of 0.5 to 5 wt. % in epoxy were characterized and 1wt.% percolation threshold was observed poor performance… More >

  • Open Access

    PROCEEDINGS

    Experimental Study of the Electrical Resistance of Graphene OxideReinforced Cement-Based Composites with Notch or Rebar

    Yangao Hu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09773

    Abstract This paper investigates the effects of graphene oxide (GO), notch depth, rebar, and load on the resistivity of cement paste and mortar. The electrical conductivity of GO/cement composite reaches its maximum value when the GO content is 0.03%, which is approximately 50% higher compared to the composite without GO. The resistivity of GO/cement composite shows significant changes with increasing load from 0 to 40 kN. The gauge factor for compressive loading varies from about 26 to 73 for different GO contents. Moreover, the resistivity variation with the notch depth in GO/cement is found to be More >

  • Open Access

    PROCEEDINGS

    Uniaxial Compressive Mechanical Properties of Three-Dimensional Graphene: Theoretical Models and Molecular Dynamics Simulations

    Xinliang Li1, Jiangang Guo1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-2, 2023, DOI:10.32604/icces.2023.09484

    Abstract As the first two-dimensional (2D) material discovered in experiments, graphene has attracted increasing attention from the scientific community [1]. And it possesses many superb mechanical, electronic and optical properties [2-4] due to its unique atomic structure. Its Young’s modulus and failure strength are 1TPa and 130GPa [5], respectively. Thus, 2D graphene has been extensively used in nanosensors and nanocomposites [6-8], etc. In order to fabricate graphene-based devices which inherit outstanding properties of 2D graphene, materials scientists are trying to use 2D graphene as building blocks to construct three-dimensional (3D) carbon nanomaterials, such as 3D graphene… More >

  • Open Access

    PROCEEDINGS

    Self-Driving Behavior and Pinning Effect of Droplets on GrapheneCovered Functional Textured Surfaces

    Fujian Zhang1, Xiang Gao1, Zhongqiang Zhang1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09169

    Abstract Biological features such as the bumps on the back of desert beetles and the spikes of cacti enable the directional transport of water droplets, creating conditions for their survival in nature. Inspired by the interesting natural phenomenon, a novel design of nanopillared surface with a gradient density of structural pillar matrix covered by a monolayer graphene is proposed to realize ultrafast self-driving of water droplets. The droplet can move spontaneously at ultrahigh speed of 75.7 m/s (272.52 km/h) from sparsest to densest regions of pillars while a wettability gradient is created by the gradient distribution… More >

  • Open Access

    PROCEEDINGS

    Tensile Properties and Microscopic Mechanism of Carbon Nanotube/Graphene Foam Materials

    Shuai Wang1,*, Lihong Liang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.09163

    Abstract Compared to pure carbon nanotube (CNT) foam (CF) and pure graphene foam (GrF), the CNT/graphene composite foam show enhanced mechanical properties, using coarse-grained molecular dynamics method, the tensile and compressive properties and corresponding deformation mechanism of several typical CNT/graphene composite foams were studied. The CNT coating could enhance the bending resistance of graphene, based on the CNT-coated graphene flakes, the CNT-coated graphene foam (CCGF) is constructed, which shows better compressive modulus due to the enhanced bending resistance of CNT-coated graphene flakes compared to graphene in pure GrF [1]. CNT can enhance the mechanical properties of… More >

  • Open Access

    ARTICLE

    Design and Analysis of Graphene Based Tunnel Field Effect Transistor with Various Ambipolar Reducing Techniques

    Puneet Kumar Mishra1, Amrita Rai1, Nitin Sharma2, Kanika Sharma3, Nitin Mittal4, Mohd Anul Haq5,*, Ilyas Khan6, ElSayed M. Tag El Din7

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 1309-1320, 2023, DOI:10.32604/cmc.2023.033828

    Abstract The fundamental advantages of carbon-based graphene material, such as its high tunnelling probability, symmetric band structure (linear dependence of the energy band on the wave direction), low effective mass, and characteristics of its 2D atomic layers, are the main focus of this research work. The impact of channel thickness, gate under-lap, asymmetric source/drain doping method, workfunction of gate contact, and High-K material on Graphene-based Tunnel Field Effect Transistor (TFET) is analyzed with 20 nm technology. Physical modelling and electrical characteristic performance have been simulated using the Atlas device simulator of SILVACO TCAD with user-defined material More >

Displaying 1-10 on page 1 of 55. Per Page