Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (62)
  • Open Access

    ARTICLE

    Experimental Study on a Hybrid Battery Thermal Management System Combining Oscillating Heat Pipe and Liquid Cooling

    Hongkun Lu1,2,*, M. M. Noor2,3,4,*, K. Kadirgama2

    Frontiers in Heat and Mass Transfer, Vol.23, No.1, pp. 299-324, 2025, DOI:10.32604/fhmt.2024.059871 - 26 February 2025

    Abstract To improve the thermal performance and temperature uniformity of battery pack, this paper presents a novel battery thermal management system (BTMS) that integrates oscillating heat pipe (OHP) technology with liquid cooling. The primary innovation of the new hybrid BTMS lies in the use of an OHP with vertically arranged evaporator and condenser, enabling dual heat transfer pathways through liquid cooling plate and OHP. This study experimentally investigates the performance characteristics of the ⊥-shaped OHP and hybrid BTMS. Results show that lower filling ratios significantly enhance the OHP’s startup performance but reduce operational stability, with optimal… More >

  • Open Access

    ARTICLE

    Graphene Oxide and Moringa oleifera Seed Oil Incorporated into Gelatin-Based Films: A Novel Active Food Packaging Material

    María Fernanda Cardona Lunar1, Ramón Ordoñez2, Heidi Fonseca Florido3, Joaquín Hernández-Fernández4,5,6, Rodrigo Ortega-Toro1,*

    Journal of Renewable Materials, Vol.13, No.2, pp. 311-327, 2025, DOI:10.32604/jrm.2024.056639 - 20 February 2025

    Abstract The extensive use of polymeric materials in single-use packaging has driven the need to develop biodegradable alternatives. This study investigates the incorporation of graphene oxide (GO) and Moringa oleifera seed oil (MOSO) into a gelatin matrix to create polymer films and evaluate their potential as active packaging materials. The properties of these films were evaluated using structural, thermal, mechanical, optical, and physicochemical methods to determine their suitability for food packaging applications. The results showed that GO and MOSO were homogeneously dispersed in the gelatin matrix, forming colloidal particles (around 5 µm in diameter). The addition… More > Graphic Abstract

    Graphene Oxide and <i>Moringa oleifera</i> Seed Oil Incorporated into Gelatin-Based Films: A Novel Active Food Packaging Material

  • Open Access

    REVIEW

    Plates, Beams and Shells Reinforced by CNTs or GPLs: A Review on Their Structural Behavior and Computational Methods

    Mohammad Javad Bayat1, Amin Kalhori2, Kamran Asemi1,*, Masoud Babaei3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1351-1458, 2025, DOI:10.32604/cmes.2025.060222 - 27 January 2025

    Abstract Since the initial observation of carbon nanotubes (CNTs) and graphene platelets (GPLs) in the 1990 and 2000s, the demand for high-performance structural applications and multifunctional materials has driven significant interest in composite structures reinforced with GPLs and CNTs. Incorporating these nanofillers into matrix materials markedly enhances the mechanical properties of the structures. To further improve efficiency and functionality, functionally graded (FG) distributions of CNTs and GPLs have been proposed. This study presents an extensive review of computational approaches developed to predict the global behavior of composite structural components enhanced with CNT and GPL nanofillers. The… More >

  • Open Access

    PROCEEDINGS

    Collision-Induced Adhesion Behavior and Mechanism for Metal Particle and Graphene

    Haitao Hei1, Jian Wang1, Yonggang Zheng1, Hongfei Ye1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011298

    Abstract Micro- and nano-scale collisions are widely involved in molecular movement, drug delivery, the actuation of micro-nano devices, etc. They often exhibit extraordinary behaviour relative to the common macroscopic collisions. A deep understanding on the scale reduction-induced novel collision phenomenon and the related mechanism is rather crucial. In this work, the comprehensive impact behaviour of metal projectiles on graphene is investigated on the basis of molecular dynamics simulations. It is found that besides the common penetration and rebound behaviours, the impacting metal projectile can also be captured by the ultrasoft two-dimensional materials, i.e., the adhesion behaviour.… More >

  • Open Access

    ARTICLE

    Effect of Process Parameters on the Agglomeration Behavior and Tensile Response of Graphene Reinforced Magnesium Matrix Composites Based on Molecular Dynamics Model

    Chentong Zhao1, Jiming Zhou1,2,*, Xujiang Chao1,3, Su Wang1, Lehua Qi1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2453-2469, 2024, DOI:10.32604/cmes.2024.052723 - 31 October 2024

    Abstract The mechanical properties of graphene reinforced composites are often hampered by challenges related to the dispersion and aggregation of graphene within the matrix. This paper explores the mechanism of cooling rate, process temperature, and process pressure’s influence on the agglomeration behavior of graphene and the tensile response of composites from a computer simulation technology, namely molecular dynamics. Our findings reveal that the cooling rate exerts minimal influence on the tensile response of composites. Conversely, processing temperature significantly affects the degree of graphene aggregation, with higher temperatures leading to the formation of larger-sized graphene clusters. In More >

  • Open Access

    ARTICLE

    Quasi-Static and Low-Frequency Dynamic Mechanical Analysis Characterization of Graphene Nanoplatelets/Glass Fabric/Bisphenol-A-Based Epoxy Nanocomposites

    Santhanakrishnan Mamallan1, Venkateshwaran Narayanan1,*, Canungo Bhimarao Ragothaman2

    Journal of Polymer Materials, Vol.41, No.3, pp. 105-116, 2024, DOI:10.32604/jpm.2024.056744 - 30 September 2024

    Abstract Glass fabric/polymer composites are widely used in various industrial applications due to their lightweight, exceptional strength, and fatigue resistance. Graphene nanoplatelets, a recently developed type of carbon material, stand out as unique nanofillers due to their 2D quantum confinement and expansive surface area within a polymer matrix. These features make them more effective than traditional carbon nanofillers at enhancing a range of properties. In this study, 3-weight % of graphene nanoplatelets with epoxy resin were used for investigation by varying sonication durations (0, 20, 40, and 60 min) using an ultrasonic bath sonicator. The laminates More >

  • Open Access

    ARTICLE

    Mechanical and Tribological Behavior of Graphene Oxide Supported Aramid Fiber Reinforced Epoxy Resin

    Yuanyuan Feng1, Bingli Pan1,*, Hongyu Liu1,2, Yuxuan Zhou1, Xiaofan Ding1, Xinyu Yuan1

    Journal of Polymer Materials, Vol.41, No.3, pp. 191-203, 2024, DOI:10.32604/jpm.2024.055558 - 30 September 2024

    Abstract In this paper, knitted aramid fiber (AF) was used as the support, and graphene oxide (GO) was loaded on the support by the polydopamine (PDA) method. Epoxy resin (EP) was poured to obtain composite materials. The tribological and mechanical properties of the composites were tested, and the wear surface of the composites was characterized by scanning electron microscopy (SEM) and three-dimensional morphology. The results show that knitted AF can markedly improve the mechanical properties of the composites. As a two-dimensional material, GO plays an effective lubrication role, and GO effectively enhances the tribological properties of… More >

  • Open Access

    ARTICLE

    Advanced Nanocomposite Arabic Gum Polyacrylic Acid Hydrogels for Flexible Supercapacitors

    Borhan Albiss*, Asala Saleh

    Journal of Renewable Materials, Vol.12, No.7, pp. 1219-1236, 2024, DOI:10.32604/jrm.2024.050685 - 21 August 2024

    Abstract In this work, the fabrication and characterization of the nanocomposite hydrogel, as a solid electrode in electrochemical cell and gel electrolyte material using Indium titanium oxide/polyethylene terephthalate (ITO/PET) flexible substrate for double-layer supercapacitors have been reported. The nanocomposite hydrogel composed of Arabic gum (AG), Acrylic acid (AA), reduced graphene oxide (RGO), and silver nanoparticles (AgNPs) was fabricated via a physical cross-linked polymerization reaction, in which the ascorbic acid was used as a reducing agent to generate AgNPs and to convert Graphene oxide (GO) to RGO during the polymerization reaction. The morphology and structural characteristics of… More > Graphic Abstract

    Advanced Nanocomposite Arabic Gum Polyacrylic Acid Hydrogels for Flexible Supercapacitors

  • Open Access

    ARTICLE

    Investigation of Projectile Impact Behaviors of Graphene Aerogel Using Molecular Dynamics Simulations

    Xinyu Zhang1, Wenjie Xia2, Yang Wang3,4, Liang Wang1,*, Xiaofeng Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3047-3061, 2024, DOI:10.32604/cmes.2023.046922 - 11 March 2024

    Abstract Graphene aerogel (GA), as a novel solid material, has shown great potential in engineering applications due to its unique mechanical properties. In this study, the mechanical performance of GA under high-velocity projectile impacts is thoroughly investigated using full-atomic molecular dynamics (MD) simulations. The study results show that the porous structure and density are key factors determining the mechanical response of GA under impact loading. Specifically, the impact-induced penetration of the projectile leads to the collapse of the pore structure, causing stretching and subsequent rupture of covalent bonds in graphene sheets. Moreover, the effects of temperature More >

  • Open Access

    ARTICLE

    Radiative Blood-Based Hybrid Copper-Graphene Nanoliquid Flows along a Source-Heated Leaning Cylinder

    Siti Nur Ainsyah Ghani1, Noor Fadiya Mohd Noor1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 1017-1037, 2024, DOI:10.32604/cmes.2023.031372 - 30 December 2023

    Abstract Variant graphene, graphene oxides (GO), and graphene nanoplatelets (GNP) dispersed in blood-based copper (Cu) nanoliquids over a leaning permeable cylinder are the focus of this study. These forms of graphene are highly beneficial in the biological and medical fields for cancer therapy, anti-infection measures, and drug delivery. The non-Newtonian Sutterby (blood-based) hybrid nanoliquid flows are generalized within the context of the Tiwari-Das model to simulate the effects of radiation and heating sources. The governing partial differential equations are reformulated into a nonlinear set of ordinary differential equations using similar transformational expressions. These equations are then… More >

Displaying 1-10 on page 1 of 62. Per Page