Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (20)
  • Open Access

    ARTICLE

    A Piecewise Linear Isotropic-Kinematic Hardening Model with Semi-Implicit Rules for Cyclic Loading and Its Parameter Identification

    M. Ohsaki1, T. Miyamura2, J. Y. Zhang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.111, No.4, pp. 303-333, 2016, DOI:10.3970/cmes.2016.111.303

    Abstract A simple constitutive model, called semi-implicit model, for cyclic loading is proposed for steel materials used for structures such as building frames in civil engineering. The constitutive model is implemented in the E-Simulator, which is a software package for large-scale seismic response analysis. The constitutive relation is defined in an algorithmic manner based on the piecewise linear combined isotropic-kinematic hardening. Different rules are used for the first and subsequent loading states to incorporate characteristics such as yield plateau and Bauschinger effect of rolled mild steel materials. An optimization method is also presented for parameter identification from the results of cyclic… More >

  • Open Access

    ARTICLE

    Sequential Limit Analysis of Rotating Hollow Cylinders of Nonlinear Isotropic Hardening

    S.-Y. Leu1, J.T. Chen2

    CMES-Computer Modeling in Engineering & Sciences, Vol.14, No.2, pp. 129-140, 2006, DOI:10.3970/cmes.2006.014.129

    Abstract Plastic limit angular velocity of rotating hollow cylinders made of the von Mises materials with nonlinear isotropic hardening is investigated numerically and analytically in the paper. The paper applies sequential limit analysis to deal with the rotating problems involving hardening material property and weakening behavior resulted from the widening deformation. By sequential limit analysis, the paper treats the plasticity problems as a sequence of limit analysis problems stated in the upper bound formulation. Rigorous upper bounds are acquired iteratively through a computational optimization procedure with the angular velocity factor as the objective function. Especially, rigorous validation was conducted by numerical… More >

  • Open Access

    ARTICLE

    Computing Prager's Kinematic Hardening Mixed-Control Equations in a Pseudo-Riemann Manifold

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.12, No.3, pp. 161-180, 2006, DOI:10.3970/cmes.2006.012.161

    Abstract Materials' internal spacetime may bear certain similarities with the external spacetime of special relativity theory. Previously, it is shown that material hardening and anisotropy may cause the internal spacetime curved. In this paper we announce the third mechanism of mixed-control to cause the curvedness of internal spacetime. To tackle the mixed-control problem for a Prager kinematic hardening material, we demonstrate two new formulations. By using two-integrating factors idea we can derive two Lie type systems in the product space of Mm+1⊗Mn+1. The Lie algebra is a direct sum of so(m,1)so(n,1), and correspondingly the symmetry group is a direct product of… More >

  • Open Access

    ARTICLE

    Micromechanics-Based Fiber-Bridging Analysis of Strain-Hardening Cementitious Composite Accounting for Fiber Distribution

    B.Y. Lee1, Y. Lee2, J.K.Kim3, Y.Y.Kim4

    CMES-Computer Modeling in Engineering & Sciences, Vol.61, No.2, pp. 111-132, 2010, DOI:10.3970/cmes.2010.061.111

    Abstract In the present work, a micromechanics-based fiber-bridging constitutive model that quantitatively takes into consideration the distribution of fiber orientation and the number of fibers, is derived and a fiber-bridging analysis program is developed. An image processing technique is applied to evaluate the fiber distribution characteristics of four different types of strain-hardening cementitious composites. Then, the fiber-bridging curves obtained from image analysis are compared with those obtained from the assumption of two- and three-dimensional fiber distributions. The calculated ultimate tensile strains are also compared with experimental results. Test results showed that the tensile behavior of strain-hardening cementitious composites can be more… More >

  • Open Access

    ARTICLE

    On Numerical Modeling of Cyclic Elastoplastic Response of Shell Structures

    Zdenko Tonković1, Jurica Sorić1,2, Ivica Skozrit1

    CMES-Computer Modeling in Engineering & Sciences, Vol.26, No.2, pp. 75-90, 2008, DOI:10.3970/cmes.2008.026.075

    Abstract An efficient numerical algorithm for modeling of cyclic elastoplastic deformation of shell structures is derived. The constitutive model includes highly nonlinear multi-component forms of kinematic and isotropic hardening functions in conjunction with von Mises yield criterion. Therein, the closest point projection algorithm employing the Reissner-Mindlin type kinematic model, completely formulated in tensor notation, is applied. A consistent elastoplastic tangent modulus ensures high convergence rates in the global iteration approach. The integration algorithm has been implemented into a layered assumed strain isoparametric finite shell element, which is capable of geometrical nonlinearities including finite rotations. Numerical examples, considering the symmetric and nonsymmetric… More >

  • Open Access

    ARTICLE

    An Implicit Integration Scheme for a Nonisothermal Viscoplastic, Nonlinear Kinematic Hardening Model

    M. Akamatsu1, K. Nakane2, N. Ohno1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.10, No.3, pp. 217-228, 2005, DOI:10.3970/cmes.2005.010.217

    Abstract In this study, a fully implicit integration scheme is developed for a nonisothermal viscoplastic, nonlinear kinematic hardening model. Nonlinear dynamic recovery in addition to strain hardening is assumed for the evolution of multiple back stresses so that ratcheting and mean-stress relaxation can be properly simulated. Temperature dependence of back stress evolution is also taken into account in the constitutive model. By discretizing a set of such advanced constitutive relations using the backward Euler method, a tensor equation is derived and linearized to iteratively achieve the implicit integration of constitutive variables. The fully implicit integration scheme developed is programmed as a… More >

  • Open Access

    ARTICLE

    Non-uniform Hardening Constitutive Model for Compressible Orthotropic Materials with Application to Sandwich Plate Cores

    Zhenyu Xue1, Ashkan Vaziri1, John W. Hutchinson1

    CMES-Computer Modeling in Engineering & Sciences, Vol.10, No.1, pp. 79-96, 2005, DOI:10.3970/cmes.2005.010.079

    Abstract A constitutive model for the elastic-plastic behavior of plastically compressible orthotropic materials is proposed based on an ellipsoidal yield surface with evolving ellipticity to accommodate non-uniform hardening or softening associated with stressing in different directions. The model incorporates rate-dependence arising from material rate-dependence and micro-inertial effects. The basic inputs are the stress-strain responses under the six fundamental stress histories in the orthotropic axes. Special limits of the model include classical isotropic hardening theory, the Hill model for incompressible orthotropic solids, and the Deshpande-Fleck model for highly porous isotropic foam metals. A primary motivation is application to metal core structure in… More >

  • Open Access

    ARTICLE

    A New Theory of Strain Hardening and its Consequences for Yield Stress and Failure Stress

    CMC-Computers, Materials & Continua, Vol.47, No.1, pp. 45-63, 2015, DOI:10.3970/cmc.2015.047.045

    Abstract A new theory of strain hardening is developed. Important in its own right, the strain hardening solution is also of decisive use in rigorously defining the historically broad concepts of yield stress and failure stress. Under ideal conditions yield stress is found to represent a 3rd order transition. Failure stress is an explicit "failure of function" criterion rather than just being the primitive notion of breaking into pieces. Computational extensions and opportunities are discussed. More >

  • Open Access

    ARTICLE

    A Plastic Damage Model with Stress Triaxiality-Dependent Hardening for Concrete

    X.P. Shen1,2, X.C. Wang1

    CMC-Computers, Materials & Continua, Vol.39, No.2, pp. 135-152, 2014, DOI:10.3970/cmc.2014.039.135

    Abstract Emphases of this study were placed on the modelling of plastic damage behaviour of prestressed structural concrete, with special attention being paid to the stress-triaxiality dependent plastic hardening law and the corresponding damage evolution law. A definition of stress triaxiality was proposed and introduced in the model presented here. Drucker-Prager -type plasticity was adopted in the formulation of the plastic damage constitutive equations. Numerical validations were performed for the proposed plasticity-based damage model with a driver subroutine developed in this study. The predicted stress-strain behaviour seems reasonably accurate for the uniaxial tension and uniaxial compression compared with the experimental data… More >

  • Open Access

    ARTICLE

    Effect of Process Parameters on Laser Surface Hardening of Plain Carbon Eutectoid Steel

    S. Mukherjee1, S. Chakraborty2, I. Manna1,3

    CMC-Computers, Materials & Continua, Vol.10, No.3, pp. 217-228, 2009, DOI:10.3970/cmc.2009.010.217

    Abstract Influence of power density and interaction time for austenitisation during laser surface hardening of plain carbon eutectoid steel has been investigated. The analysis involves numerical prediction of thermal and solute diffusion profiles and thereby, the time needed for homogenization of austenite for different processing conditions. Experimental results provide qualitative validation. More >

Displaying 11-20 on page 2 of 20. Per Page