Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (698)
  • Open Access

    REVIEW

    A REVIEW ON EXERGY ANALYSIS OF NANOFLUID FLOW THROUGH SEVERAL CONDUITS

    Lohit Sharmaa , Sunil Kumara , Robin Thakura , Bhaskar Goela , Amar Raj Singh Suria , Sashank Thapaa , Nitin Kumara , Rajesh Maithanib , Anil Kumarb

    Frontiers in Heat and Mass Transfer, Vol.14, No.1, pp. 1-15, 2020, DOI:10.5098/hmt.14.30

    Abstract This article presents an extensive review on exergy analysis of nanofluid flow through heat exchanger channels. The improvement of exergy efficiency of nanofluid flow through heat exchanger are determined by the net impact of the relative variations in the thermophysical properties of the nanoparticle which are sensitive towards numerous parameters including size and shape, material and concentration as well as base fluid thermal properties. Exergy efficiency of nanofluids flowing through heat exchanger is greater as compare to simple conventional fluids. The augmentation of exergy efficiency in the nanofluid flow through heat exchangers can be achieved by breaking laminar sub layer… More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATIONS ON FLOW STRUCTURE AND HEAT TRANSFER IN A SQUARE DUCT EQUIPPED WITH DOUBLE VORIFICE

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.14, No.1, pp. 1-11, 2020, DOI:10.5098/hmt.14.27

    Abstract Numerical predictions on heat transfer characteristic, flow topology and thermal performance assessment in a square duct are presented. The passive technique, insertion of the vortex generator, is opted to develop the heat transfer rate in the square duct heat exchanger. The vortex generator of the present research is Double V-Orifice (DVO). The square duct equipped with DVO is tested with various parameters. The influences of DVO height, b, to the duct height, H, or b/H, gap spacing between the outer edge of the orifice and the duct wall, s, to the duct height or s/H and flow directions (tip-pointing-Downstream and… More >

  • Open Access

    ARTICLE

    TURBULENT HEAT TRANSFER IN AN AXIALLY ROTATING PIPE AT HIGH ROTATION RATE: A NUMERICAL STUDY

    Obed Y.W. Abotsi, John P. Kizito*

    Frontiers in Heat and Mass Transfer, Vol.14, No.1, pp. 1-6, 2020, DOI:10.5098/hmt.14.24

    Abstract In this paper, turbulent water flow and heat transfer are studied numerically in a pipe which is rotating about its longitudinal axis. Computations were conducted for axial Reynolds numbers ranging from 10000 to 30000 at different rotation rates. Rotation rate (N) is the ratio of the rotational Reynolds number to the axial Reynolds number. Predictions showed that the Nusselt number (Nu) of the stationary pipe (N=0) was augmented by 50-58% at N=5, 105-132% at N=10, 150-201% at N=15, 208-265% at N=20, and 320-373% at N=30. Improvements in the heat transfer rate was linked to the introduction of tangential velocity components… More >

  • Open Access

    ARTICLE

    THERMAL BEHAVIOR OF LITHIUM-ION BATTERIES: AGING, HEAT GENERATION, THERMAL MANAGEMENT AND FAILURE

    Daniela Galatroa,*, Maan Al-Zareera , Carlos Da Silvaa , David A. Romeroa , Cristina H. Amona

    Frontiers in Heat and Mass Transfer, Vol.14, No.1, pp. 1-18, 2020, DOI:10.5098/hmt.14.17

    Abstract This work presents a succinct review of the thermal behavior of lithium-ion batteries (LIBs) and its relationship with aging, heat generation, thermal management and thermal failure. This work focuses on the temperature effects that promote the main aging mechanisms in the anode and compare these effects among different cell chemistries for calendar and cycling aging modes. We review the strategies to mitigate aging, including the design of the battery thermal management system (BTMS), best practices of battery users to minimize the effect of stress factors, and the appropriate selection of the anode material. We discuss the heat generation and surface… More >

  • Open Access

    REVIEW

    RESEARCH AND DEVELOPMENT OF LOOP HEAT PIPE – A REVIEW

    Hao Guoa , Xianbing Jia,b,1 , Jinliang Xua,b

    Frontiers in Heat and Mass Transfer, Vol.14, No.1, pp. 1-16, 2020, DOI:10.5098/hmt.14.14

    Abstract With fast development of electronic devices, novel strategies of thermal management have been received great attention to dissipate high heat fluxes. As an efficient heat transfer device, loop heat pipe (LHP) provides ideal solution for such purpose. Even though LHP was invented nearly half-century ago, challenges still exist on its design, fabrication and operation. The objective of this paper is to present a thorough review on LHPs, paying more attention on the working principle, advantage and configuration. The review is performed in three aspects. First, the macroscopic operation characteristics such as start-up, temperature fluctuations and anti-gravity operation are described. Second,… More >

  • Open Access

    ARTICLE

    EXPERIMENT STUDY ON THE BOILING HEAT TRANSFER OF LIQUID FILM IN A ROTATING PIPE

    Wenlei Lian, Zijian Sun, Taoyi Han, Yimin Xuan*

    Frontiers in Heat and Mass Transfer, Vol.14, No.1, pp. 1-6, 2020, DOI:10.5098/hmt.14.10

    Abstract An experimental facility is developed to investigate the characteristics of the nucleate boiling heat transfer in a rotating water film. The High speed photography technique is used to visualize the flow field of the rotating water film. Along with the bubble photographs, the centrifugal acceleration, heat flux into the film, and the heat transfer coefficient are calculated to learn the heat transfer characteristics of the water film. It is found that the boiling heat transfer coefficient decreases with the increment of heat flux. The heat transfer coefficient increases with acceleration increasing from 20g to 60g, but show no obvious increase… More >

  • Open Access

    ARTICLE

    RESEARCH ON BUILDING GLAZED TILE OF FLY ASH ADDED BY RADIATION HEAT TREATMENT INSIDE CATALYTIC COMBUSTION FURNACE OF NATURAL GAS

    Shihong Zhang* , Xu Fan

    Frontiers in Heat and Mass Transfer, Vol.14, No.1, pp. 1-6, 2020, DOI:10.5098/hmt.14.9

    Abstract This article discussed compressive strength, water absorption, thermal conductivity and Frost resistance of building glazed tile of fly ash added in order to solve the problem of shortage of raw materials in the production. According to the technology of catalytic combustion furnace, glazed tiles of fly ash added with pure solid texture and glamorous colors were obtained by radiation heat treatment. It also greatly reduced pollutant emissions. The suitable proportion is about 30% of fly ash from these tests and the molding pressure is 20MPa. The utilization of fly ash not only alleviates the environmental pollution, but also saves raw… More >

  • Open Access

    ARTICLE

    COMPARISON OF CFD AND EMPIRICAL MODELS FOR PREDICTING WALL TEMPERATURE AT SUPERCRITICAL CONDITIONS OF WATER

    S. Ananda, S. Suresha, R. Dhanuskodib, D. Santhosh Kumarb,*

    Frontiers in Heat and Mass Transfer, Vol.14, No.1, pp. 1-9, 2020, DOI:10.5098/hmt.14.8

    Abstract The present work investigates the wall temperature prediction at supercritical pressure of water by CFD and compares the prediction of CFD and that of 11 empirical correlations available in literature. Supercritical-water heat transfer experimental data, covering a mass flux range of 400-1500 kg/m2s, heat flux range of 150-1000 kW/m2, at pressure 241 bar and diameter 10 mm tube, were obtained from literature. CFD simulations have been carried out for those operating conditions and compared with experimental data. Around 362 experimental wall temperature data of both heat transfer enhancement and heat transfer deterioration region have been taken for comparison. A visual… More >

  • Open Access

    ARTICLE

    EFFECTS OF VARIABLE VISCOSITY ON HEAT AND MASS TRANSFER BY MHD MIXED CONVECTION FLOW ALONG A VERTICAL CYLINDER EMBEDDED IN A NON-DARCY POROUS MEDIUM

    Saddam Atteyia Mohammad*

    Frontiers in Heat and Mass Transfer, Vol.14, No.1, pp. 1-10, 2020, DOI:10.5098/hmt.14.7

    Abstract An analysis was performed to study the effects of variable viscosity on steady, laminar, hydromagnetic simultaneous heat and mass transfer by mixed convection flow along a vertical cylinder embedded in a non-Darcy porous medium. The analysis was performed for the case of power-law variations of both the surface temperature and concentration. The viscosity of the fluid is assumed to be an inverse linear function of temperature. Certain transformations were employed to transform the governing differential equations to non-similar form. The transformed equations were solved numerically by finite difference method. The entire regime of mixed convection was studied. From this study… More >

  • Open Access

    ARTICLE

    GENERALIZED MAGNETO- THERMOELASTICITY AND HEAT CONDUCTION ON AN INFINITE MEDIUM WITH SPHERICAL CAVITY

    Mahmoud A. Ismaila, Shadia Fathi Mohamed El Sherif a , A. A. El-Baryb,*, Hamdy M. Youssefc

    Frontiers in Heat and Mass Transfer, Vol.14, No.1, pp. 1-7, 2020, DOI:10.5098/hmt.14.3

    Abstract In this paper we will discuss the problem of distribution of thermal stresses and temperature in a generalized magneto–thermo-viscoelastic solid spherical cavity of radius R according to Green- Naghdi (G-N II) and (G-N III) theory. The surface of the cavity is assumed to be free traction and subjected to a constant thermal shock. The Laplace transform technique is used to solve the problem. The state space approach is adopted for the solution of one dimensional problem. Solution of the problem in the physical domain are obtained by using a numerical method of MATLAP Programmer and the expression for the temperature,… More >

Displaying 1-10 on page 1 of 698. Per Page  

Share Link