Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,024)
  • Open Access

    ARTICLE

    Effect of a Porous Layer on the Flow Structure and Heat Transfer in a Square Cavity

    S. Hamimid1, M. Guellal1, A. Amroune1, N. Zeraibi2

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.1, pp. 69-90, 2012, DOI:10.3970/fdmp.2011.008.069

    Abstract A two-dimensional rectangular enclosure containing a binary-fluid saturated porous layer of finite thickness placed in the centre of the cavity is considered. Phase change is neglected. Vertical and horizontal solid boundaries are assumed to be isothermal and adiabatic, respectively. A horizontal temperature gradient is imposed, driving convection of buoyancy nature. The Darcy equation, including Brinkman and Forchheimer terms is used to account for viscous and inertia effects in the momentum equation, respectively. The problem is then solved numerically in the framework of a Velocity-Pressure formulation resorting to a finite volume method based on the standard SIMPLER algorithm. The effects of… More >

  • Open Access

    ARTICLE

    Heat Exchange between Film Condensation and Porous Natural Convection across a Vertical Wall

    Rashed Al-Ajmi1, Mohamed Mosaad1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.1, pp. 51-68, 2012, DOI:10.3970/fdmp.2011.008.051

    Abstract Conjugate heat transfer across a vertical solid wall separating natural convection in a cold fluid-saturated porous medium and film condensation in a saturated-vapour medium is analyzed. The analysis reveals that this thermal interaction process is mainly controlled by the thermal resistance ratio of wall to porous-side natural convection and that of condensate film to natural convection. Asymptotic and numerical results of interest are obtained for the local and mean overall Nusselt number as functions of these two thermal resistance ratios. More >

  • Open Access

    ARTICLE

    Interface Deformation and Convective Transport in Horizontal Differentially Heated Air-Oil Layers

    Srikrishna Sahu1, K. Muralidhar1, P.K. Panigrahi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.3, pp. 265-286, 2007, DOI:10.3970/fdmp.2007.003.265

    Abstract Convection in a differentially heated cavity partly filled with silicone oil has been experimentally studied. The air-oil layers are subjected to a temperature difference in the vertical direction, with the lower wall being heated with respect to the top. The overall geometry is that of an enclosed cavity that is octagonal in plan. Heights of oil layers considered for experiments correspond to 30, 50, and 70% of the vertical cavity dimension. Measurements have been carried out using a shadowgraph technique. A limited number of interferograms have also been recorded. The shadowgraph technique has been validated against interferograms under identical experimental… More >

  • Open Access

    ARTICLE

    Thermal Communication between Two Vertical Systems of Free and Forced Convection via Heat Conduction across a Separating Wall

    M. Mosaad2, A. Ben-Nakhi2, M. H. Al-Hajeri2

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.4, pp. 301-314, 2005, DOI:10.3970/fdmp.2005.001.301

    Abstract This work deals with the problem of thermal interaction between two fluid media at two different bulk temperatures and separated by a vertical plate. The problem is analyzed by taking into account the heat conduction across the separating plate. The flow configuration considered is one in which the two vertical boundary layers of free and forced convection developed on plate sides are in parallel flow. The dimensionless parameters governing the thermal interaction mechanisms are analytically deduced. The obtained results are presented in graphs to demonstrate the heat transfer characteristics of investigated phenomenon. The work reports a means to estimate the… More >

  • Open Access

    ARTICLE

    Review: Possible strategies for the control and stabilization of Marangoni flow in laterally heated floating zones

    Marcello Lappa1

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.2, pp. 171-188, 2005, DOI:10.3970/fdmp.2005.001.171

    Abstract The paper presents a comparative and critical analysis of some theoretical/experimental/numerical arguments concerning the possible stabilization of the surface-tension-driven (Marangoni) flow in the Floating Zone technique and in various related fluid-dynamic models. It is conceived as a natural extension of the focused overview published in Cryst. Res. Tech. 40(6), 531, (2005) where much room was devoted to discuss the intrinsic physical mechanisms responsible for three-dimensional and oscillatory flows in a variety of technological processes. Here, a significant effort is provided to illustrate the genesis of possible control strategies (many of which are still in a very embryonic condition), the underlying… More >

  • Open Access

    ARTICLE

    Effects of Rotation on Heat Flow, Segregation, and Zone Shape in a Small-scale Floating-zone Silicon Growth under Axial and Transversal Magnetic Fields

    C. W. Lan1, B. C. Yeh

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.1, pp. 33-44, 2005, DOI:10.3970/fdmp.2005.001.033

    Abstract The suppression of unstable Marangoni convection in floating-zone crystal growth by magnetic fields has enjoyed over recent years a widespread use as a reliable and useful strategy. A transversal direction of the field is particularly efficient, but asymmetric zone shapes and thus segregation are induced. Counter-rotation of the feed and of the crystal rods is a common way to improve dopant homogeneity. However, its effects under magnetic fields are complex and have not yet been studied in detail. In the present analysis, three-dimensional (3D) simulations based on a finite-volume/multigrid method are used to illustrate the effects of rotation on the… More >

  • Open Access

    ARTICLE

    On the Three-Dimensional Instability of Thermocapillary Convection in Arbitrarily Heated Floating Zones in Microgravity Environment

    A.Yu. Gelfgat1, A. Rubinov2, P.Z. Bar-Yoseph2, A. Solan2

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.1, pp. 21-32, 2005, DOI:10.3970/fdmp.2005.001.021

    Abstract The three-dimensional instability of the thermocapillary convection in cylindrical undeformable floating zones heated laterally is studied numerically. Different types of the boundary conditions, including radiation heating, linearized radiation and prescribed heat flux are used in the calculation. Stability diagrams showing the Prandtl number dependence of the critical Marangoni numbers that represent the thermocapillary forcing for different heating conditions are reported. It is shown that the primary instability of initially axisymmetric thermocapillary flows is defined mainly by the total amount of heat supplied through the heated side surface. The way in which the heat is supplied has a less significant effect… More >

  • Open Access

    ARTICLE

    On the Nature and Structure of Possible Three-dimensional Steady Flows in Closed and Open Parallelepipedic and Cubical Containers under Different Heating Conditions and Driving Forces.

    Marcello Lappa1, 2

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.1, pp. 1-20, 2005, DOI:10.3970/fdmp.2005.001.001

    Abstract Possible natural transport mechanisms in cubical and shallow cavities with different heating conditions (from below or from the side) are investigated by means of numerical solution of the non-linear model equations and multiprocessor computations. Attention is focused on a variety of three-dimensional steady effects that can arise in such configurations in the case of low-Pr liquids (silicon melt) even for relatively small values of the temperature gradient due to localized boundary effects and/or true instabilities of the flow. Such aspects are still poorly known or completely ignored owing to the fact that most of the existing experiments focused on the… More >

  • Open Access

    ARTICLE

    Wave Propagation in a Magneto-Micropolar Thermoelastic Medium with Two Temperatures for Three-Phase-Lag Model

    SamiaM.Said1

    CMC-Computers, Materials & Continua, Vol.52, No.1, pp. 1-24, 2016, DOI:10.3970/cmc.2016.052.001

    Abstract The present paper is concerned with the wave propagation in a micropolar thermoelastic solid with distinct two temperatures under the effect of the magnetic field in the presence of the gravity field and an internal heat source. The formulation of the problem is applied in the context of the three-phase-lag model and Green-Naghdi theory without dissipation. The medium is a homogeneous isotropic thermoelastic in the half-space. The exact expressions of the considered variables are obtained by using normal mode analysis. Comparisons are made with the results in the two theories in the absence and presence of the magnetic field as… More >

  • Open Access

    ARTICLE

    Phonon Transport of Rough Si/Ge Superlattice Nanotubes

    Yuhang Jing1, Ming Hu2,3

    CMC-Computers, Materials & Continua, Vol.38, No.1, pp. 43-59, 2013, DOI:10.3970/cmc.2013.038.043

    Abstract Nanostructuring of thermoelectric materials bears promise for manipulating physical parameters to improve the energy conversion efficiency of thermoelectrics. In this paper the thermal transport in Si/Ge superlattice nanotubes is investigated by performing nonequilibrium molecular dynamics simulations aiming at realizing low thermal conductivity by surface roughening. Our calculations revealed that the thermal conductivity of Si/Ge superlattice nanotubes depends nonmonotonically on periodic length and increases as the wall thickness increases. However, the thermal conductivity is not sensitive to the inner diameters due to the strong surface scattering at thin wall thickness. In addition, introducing roughness onto the superlattice nanotubes surface can destroy… More >

Displaying 991-1000 on page 100 of 1024. Per Page