Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,273)
  • Open Access

    ARTICLE

    Unsteady Flow Dynamics and Phase Transition Behavior of CO2 in Fracturing Wellbores

    Zihao Yang1,*, Jiarui Cheng1, Zefeng Li2, Yirong Yang1, Linghong Tang1, Wenlan Wei1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.9, pp. 2149-2176, 2025, DOI:10.32604/fdmp.2025.067739 - 30 September 2025

    Abstract This study presents a two-dimensional, transient model to simulate the flow and thermal behavior of CO2 within a fracturing wellbore. The model accounts for high-velocity flow within the tubing and radial heat exchange between the wellbore and surrounding formation. It captures the temporal evolution of temperature, pressure, flow velocity, and fluid density, enabling detailed analysis of phase transitions along different tubing sections. The influence of key operational and geological parameters, including wellhead pressure, injection velocity, inlet temperature, and formation temperature gradient, on the wellbore’s thermal and pressure fields is systematically investigated. Results indicate that due to… More >

  • Open Access

    ARTICLE

    Multiphysics Simulation of Flow and Heat Transfer in Titanium Slag Smelting within an Electric Arc Furnace

    Yifan Wang1, Shan Qing1,2,*, Jifan Li1,3,*, Xiaohui Zhang1,3, Junxiao Wang4

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.9, pp. 2253-2272, 2025, DOI:10.32604/fdmp.2025.067429 - 30 September 2025

    Abstract Heat and mass transfer within an electric arc furnace are strongly influenced by extreme temperatures and complex electromagnetic fields. Variations in temperature distribution play a crucial role in determining melt flow patterns and in the formation of stagnant regions, commonly referred to as dead zones. To better understand the internal flow dynamics and thermal behavior of the furnace, this study develops a multiphysics coupled model that integrates fluid heat transfer with Maxwell’s electromagnetic field equations. Numerical simulations are conducted to systematically examine how key operational parameters, such as electric current and arc characteristics, affect the… More >

  • Open Access

    ARTICLE

    Transcriptomics Provides New Insights into Resistance Mechanisms in Wheat Infected with Puccinia striiformis f. sp. tritici

    Jing Zhang1,#, Huifen Qiao1,#, Shenglong Wang1,#, Jiawei Yuan1, Qingsong Ba1, Gensheng Zhang1,2,*, Guiping Li1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.9, pp. 2701-2718, 2025, DOI:10.32604/phyton.2025.070017 - 30 September 2025

    Abstract Wheat stripe rust, a devastating disease caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), poses a significant threat to global wheat production. Growing resistant cultivars is a crucial strategy for wheat stripe rust management. However, the underlying molecular mechanisms of wheat resistance to Pst remain incompletely understood. To unravel these mechanisms, we employed high-throughput RNA sequencing (RNA-Seq) to analyze the transcriptome of the resistant wheat cultivar Mianmai 46 (MM46) at different time points (24, 48, and 96 h) post-inoculation with the Pst race CYR33. The analysis revealed that Pst infection significantly altered the expression of genes… More >

  • Open Access

    PROCEEDINGS

    Dynamic Response of Fractional-Order Thermal-Magnetic-Elastic Coupled Solids with Spherical Holes Based on Moore-Gibson-Thompson Theory

    Lixu Chen, Yongbin Ma*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.012272

    Abstract This study establishes an innovative theoretical framework for thermo-magneto-elastic coupling, based on the generalized thermoelastic theory of Moore-Gibson-Thompson (MGT), and significantly extends the constitutive equation by introducing spatio-temporal nonlocal parameters to more accurately describe the thermodynamic behavior of materials under extreme conditions, such as ultrafast laser heating and micro-nano scale environments. This paper innovatively adopts tempered Caputo fractional derivatives to describe the memory effect of the system, which can more accurately describe complex thermodynamic processes and significantly enhance the physical authenticity of the model. The dynamic response of magneto-thermo-elasticity of spherical cavity structures under time-varying… More >

  • Open Access

    PROCEEDINGS

    Thermoelastic Transient Memory Response Analysis of Spatio-Temporal Non-Localized Porous Hollow Cylinder Based on Moore-Gibson-Thompson Thermoelasticity Theory

    Yixin Zhang, Yongbin Ma*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.012268

    Abstract In this paper, a novel porous thermoelastic model is developed, building upon the existing framework of thermoelastic model. The objective of this study is to investigate the thermoelastic response behavior of porous materials. The Klein-Gordon (KG) operator is employed to describe the effect of spatio-temporal non-localization in the constitutive equation, and the memory-dependent derivative (MDD) is incorporated into the Moore-Gibson-Thompson (MGT) heat conduction equation. The model is applied to study the thermoelastic response of hollow porous cylinders under thermal shock, which accurately captures the complex micro-interaction characteristics and memory-dependent properties of the porous structure. Subsequently,… More >

  • Open Access

    ARTICLE

    Deep Learning Models for Detecting Cheating in Online Exams

    Siham Essahraui1, Ismail Lamaakal1, Yassine Maleh2,*, Khalid El Makkaoui1, Mouncef Filali Bouami1, Ibrahim Ouahbi1, May Almousa3, Ali Abdullah S. AlQahtani4, Ahmed A. Abd El-Latif5,6

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3151-3183, 2025, DOI:10.32604/cmc.2025.067359 - 23 September 2025

    Abstract The rapid shift to online education has introduced significant challenges to maintaining academic integrity in remote assessments, as traditional proctoring methods fall short in preventing cheating. The increase in cheating during online exams highlights the need for efficient, adaptable detection models to uphold academic credibility. This paper presents a comprehensive analysis of various deep learning models for cheating detection in online proctoring systems, evaluating their accuracy, efficiency, and adaptability. We benchmark several advanced architectures, including EfficientNet, MobileNetV2, ResNet variants and more, using two specialized datasets (OEP and OP) tailored for online proctoring contexts. Our findings More >

  • Open Access

    ARTICLE

    Porous Media-Based Full-Scale Modeling of Thermal Behavior in Rotary Gas-Gas Heat Exchangers

    Chen Zhu1, Xiao Ma1, Lumin Chen2, Qi Ma1, Yi Sun1, Fuping Qian1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 1895-1915, 2025, DOI:10.32604/fdmp.2025.067899 - 12 September 2025

    Abstract The rotary gas-gas heat exchanger (GGH) is a vital component in waste heat recovery systems, particularly for Selective Catalytic Reduction (SCR) processes employed in cement kiln operations. This study investigates the thermal performance of a rotary GGH in medium- and low-temperature denitrification systems, using a simplified porous medium model based on its actual internal structure. A porous medium representation is developed from the structural characteristics of the most efficient heat transfer element, and a local thermal non-equilibrium (LTNE) model is employed to capture the distinct thermal behaviors of the solid matrix and gas phase. To… More >

  • Open Access

    ARTICLE

    Optimizing In Vitro Regeneration of Wheat via Somatic Embryogenesis Using Endosperm-Supported Mature Embryos

    Sumeyra Ucar1, Muhammed Aldaif 2, Esra Yaprak1, Esma Yigider 2, Murat Aydin2,*, Emre Ilhan1, Abdulkadir Ciltas2, Ertan Yildirim3

    Phyton-International Journal of Experimental Botany, Vol.94, No.8, pp. 2461-2477, 2025, DOI:10.32604/phyton.2025.068383 - 29 August 2025

    Abstract Wheat is a crucial crop for global food security, and effective in vitro plant regeneration techniques are considered a precondition for genetic engineering in wheat breeding programs. A practical approach for in vitro regeneration of the Kırik bread wheat cultivar via somatic embryogenesis was investigated using endosperm-supported mature embryos. Callus cultures were initiated from mature embryos supported by endosperm, cultured on phytagel-based Murashige and Skoog (MS) basal medium containing dicamba (12 mg/L) and indole-3-acetic acid (IAA) (0.5 mg/L) under dark conditions. This research was designed to examine the impact of putrescine (Put) (0.0 and 1.0 mM) on… More >

  • Open Access

    ARTICLE

    Evaluation of Seaweeds as Stimulators to Alleviate Salinity-Induced Stress on Some Agronomic Traits of Different Peanut (Arachis hypogaea L.) Cultivars

    Nilüfer Kocak Sahin*

    Phyton-International Journal of Experimental Botany, Vol.94, No.8, pp. 2399-2421, 2025, DOI:10.32604/phyton.2025.067880 - 29 August 2025

    Abstract Peanut (Arachis hypogaea) is of international importance as a source of oil and protein. Soil salinity is one of the most significant abiotic stress factors affecting the yield and quality of peanuts. This study evaluated the potential of a seaweed-based biostimulant to enhance emergence and seedling growth of four peanut cultivars (‘Ayse Hanım’, ‘Halis Bey’, ‘NC-7’, and ‘Albenek’) under increasing salinity levels. The experiment was conducted under greenhouse conditions using a randomized complete block design with four replicates. Seeds were sown in trays and treated with two doses of seaweed extract (0 and 5 g L−1) applied… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Turbulent Heat Transfer in Concentric Annular Pipes

    Jinping Xu1,2, Zhiyun Wang1, Mo Yang1,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.4, pp. 1151-1163, 2025, DOI:10.32604/fhmt.2025.067925 - 29 August 2025

    Abstract In concentric annular pipes, the difference in curvature between the inner and outer wall surfaces creates significant variations in the heat transfer characteristics of the two surfaces. The simplifications of the Dittus-Boelter equation for circular pipes make it unsuitable for the complex flow induced by the geometry and heat transfer coupling effects in annular pipes. This prevents it from accurately predicting the turbulent heat transfer in concentric annular pipes. This paper used realizable κ–ε and low Reynolds number models to conduct numerical simulations of turbulent convective heat transfer in concentric annular pipes and circular pipes.… More >

Displaying 61-70 on page 7 of 1273. Per Page