Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,273)
  • Open Access

    ARTICLE

    Numerical Analysis of Heat and Mass Transfer in Tangent Hyperbolic Fluids Using a Two-Stage Exponential Integrator with Compact Spatial Discretization

    Mairaj Bibi1, Muhammad Shoaib Arif 2, Yasir Nawaz3, Nabil Kerdid4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 537-569, 2025, DOI:10.32604/cmes.2025.070362 - 30 October 2025

    Abstract This study develops a high-order computational scheme for analyzing unsteady tangent hyperbolic fluid flow with variable thermal conductivity, thermal radiation, and coupled heat and mass transfer effects. A modified two-stage Exponential Time Integrator is introduced for temporal discretization, providing second-order accuracy in time. A compact finite difference method is employed for spatial discretization, yielding sixth-order accuracy at most grid points. The proposed framework ensures numerical stability and convergence when solving stiff, nonlinear parabolic systems arising in fluid flow and heat transfer problems. The novelty of the work lies in combining exponential integrator schemes with compact… More >

  • Open Access

    ARTICLE

    Tritipyrum Aux/IAA13L Increases Chlorophyll Content and Yield in Wheat

    Mutong Li1,#, Xiaolian Yang1,#, Zhishun Yu1, Tingting Yuan1, Wenjie Wang1, Suqin Zhang1,2,*, Guangdong Geng1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.10, pp. 3175-3188, 2025, DOI:10.32604/phyton.2025.070731 - 29 October 2025

    Abstract Wheat yield mainly depends on leaf photosynthesis and grain carbohydrate accumulation. The aux/indole-3-acetic acid 13-like (Aux/IAA13L) gene was successfully cloned from Tritipyrum ‘Y1805’ and transformed into common wheat. A bioinformatics analysis showed that the TtAux/IAA13L protein, encoding 232 amino acids, was hydrophilic and unstable. TtAux/IAA13L and Tel5E01G609500 were grouped together in a phylogenetic tree. The TtAux/IAA13L expression levels in the overexpression lines were higher than in the wild-type (WT) plants at five developmental stages: tillering, elongation, heading, flowering, and grain-filling. The expression levels in the overexpression lines first increased, peaked at the flowering stage, and then decreased.… More >

  • Open Access

    ARTICLE

    Phytochemicals, Antioxidation, and Heat Stability of Aqueous Extracts from Cherry (Prunus serrulata) Petals

    Sy-Yu Shiau*, Shuting Ni, Yanli Yu, Songling Cai, Wenbo Huang

    Phyton-International Journal of Experimental Botany, Vol.94, No.10, pp. 3047-3060, 2025, DOI:10.32604/phyton.2025.070289 - 29 October 2025

    Abstract Consumers are increasingly demanding natural colorants that are safe and offer health benefits. In addition to their ornamental characteristics, Kanzan cherry (KC) blossoms present a promising source of red-hued natural colorants and functional bioactive substances. This research utilized distilled water to extract KC petals (KCP) and their ground powders (KCPP) under varying temperatures (30°C–90°C) and times (30–180 min). The total monomeric anthocyanins (TMAC) and total phenolics (TPC) in the extracts were evaluated via the pH differential and Folin–Ciocalteu methods. Antioxidant capacities were assessed by DPPH free radical scavenging ability and reducing power. Results indicated that… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Investigation of Multiphase Flow and Heat Transfer in CO2–Water Enhanced Geothermal Systems

    Feng He*, Rui Tan, Songlian Jiang, Chao Qian, Chengzhong Bu, Benqiang Wang

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.10, pp. 2557-2577, 2025, DOI:10.32604/fdmp.2025.070186 - 30 October 2025

    Abstract This study introduces a Transformer-based multimodal fusion framework for simulating multiphase flow and heat transfer in carbon dioxide (CO2)–water enhanced geothermal systems (EGS). The model integrates geological parameters, thermal gradients, and control schedules to enable fast and accurate prediction of complex reservoir dynamics. The main contributions are: (i) development of a workflow that couples physics-based reservoir simulation with a Transformer neural network architecture, (ii) design of physics-guided loss functions to enforce conservation of mass and energy, (iii) application of the surrogate model to closed-loop optimization using a differential evolution (DE) algorithm, and (iv) incorporation of economic… More >

  • Open Access

    ARTICLE

    Modeling and Experimental Research of Heat and Mass Transfer during the Freeze-Drying of Porcine Aorta Considering Radially-Layered Tissue Properties

    Chao Gui1,2, Wanying Chang3, Yaping Liu1,*, Leren Tao3, Daoming Shen1, Mengyi Ge1

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1621-1637, 2025, DOI:10.32604/fhmt.2025.072268 - 31 October 2025

    Abstract Freeze-drying of structurally heterogeneous biomaterials such as porcine aorta presents considerable modeling challenges due to their inherent multilayer composition and moving sublimation interfaces. Conventional models often overlook structural anisotropy and dynamic boundary progression, while experimental determination of key parameters under cryogenic conditions remains difficult. To address these, this study develops a heat and mass transfer model incorporating a dynamic node strategy for the sublimation interface, which effectively handles continuous computational domain deformation. Additionally, specialized fixed nodes were incorporated to adapt to the multilayer structure and its spatially varying thermophysical properties. A novel non-contact gravimetric system More > Graphic Abstract

    Modeling and Experimental Research of Heat and Mass Transfer during the Freeze-Drying of Porcine Aorta Considering Radially-Layered Tissue Properties

  • Open Access

    ARTICLE

    Thermal Performance and Application of a Self-Powered Coal Monitoring System with Heat Pipe and Thermoelectric Integration for Spontaneous Combustion Prevention

    Tao Lin1,*, Chengdai Chen1, Liyao Chen1, Fengqin Han1, Guanghui He2

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1661-1680, 2025, DOI:10.32604/fhmt.2025.070787 - 31 October 2025

    Abstract Targeting spontaneous coal combustion during stacking, we developed an efficient heat dissipation & self-supplied wireless temperature measurement system (SPWTM) with gravity heat pipe-thermoelectric integration for dual safety. The heat transfer characteristics and temperature measurement optimization of the system are experimentally investigated and verified in practical applications. The results show that, firstly, the effects of coal pile heat production power and burial depth, along with heat pipe startup and heat transfer characteristics. At 60 cm burial depth, the condensation section dissipates 98% coal pile heat via natural convection. Secondly, for the temperature measurement error caused by… More >

  • Open Access

    ARTICLE

    Temperature Prediction of the Clamp-Conductor Coupling Zone in Transmission Lines

    Long Zhao1,*, Qi Zhao1, Siyuan Zhou1, Chenyang Fan2, Chao Ji1

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1455-1475, 2025, DOI:10.32604/fhmt.2025.069512 - 31 October 2025

    Abstract The temperature prediction of the Clamp-conductor coupling zone plays a crucial role in ensuring the safe and stable operation of overhead transmission lines and optimizing the thermal stability margin of transmission lines. While existing research in this field has thoroughly explored temperature rise prediction, the focus has been relatively narrow, either targeting conductors exclusively or focusing solely on clamps, with little attention given to the temperature rise in the conductor-clamp coupling zone or the influence of clamp temperature on conductor temperature rise. Based on this, considering axial heat transfer between the clamp and the conductor,… More >

  • Open Access

    ARTICLE

    Comprehensive Study of the Effect of Ribs and Cavities on Thermal-Hydraulic Performance of Mini-Channel Heat Sinks

    Shuaimei Lian, Pingping Liu, Wenling Liao*

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1395-1415, 2025, DOI:10.32604/fhmt.2025.069454 - 31 October 2025

    Abstract In this work, numerical simulations are performed to investigate the influence of combining ribs and triangular cavities on the thermal-hydraulic performance (THP) of MCHS at fluid velocities ranging from 1 to 4 m/s (corresponding to Reynolds numbers (Re) of 129.75 to 519). Specifically, the ribs are positioned on the bottom wall, and the rib width is equal to the mini-channel width, while the triangular cavities are arranged on the two side walls of the MCHS. By analyzing and comparing key parameters such as velocity distribution, streamline patterns, pressure drop, skin friction coefficient (Cf), Nusselt number (Nu), friction… More >

  • Open Access

    ARTICLE

    Estimation of a Line Heat Source Using an Adjoint Free Gradient Based Inverse Analysis

    Farzad Mohebbi*

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1417-1441, 2025, DOI:10.32604/fhmt.2025.069024 - 31 October 2025

    Abstract An inverse analysis is presented to estimate line heat source in two-dimensional steady-state and transient heat transfer problems. A constant heat source is considered in the steady-state heat transfer problem (a parameter estimation problem) and a time-varying heat source is considered in the transient heat transfer problem (a function estimation problem). Since a general irregular 2D heat conducting body is considered, a body-fitted grid generation is used to mesh the domain. Then governing equations and associated boundary and initial conditions are transformed from the physical domain to the computational domain and finite difference method is… More >

  • Open Access

    ARTICLE

    Numerical and Experimental Study of Thermal Storage Energy in a Building with Various Pipeline Design under Floor—Case Study

    Rafah H. Zaidan*, Najim A. Jasim

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1595-1620, 2025, DOI:10.32604/fhmt.2025.068205 - 31 October 2025

    Abstract This paper presents a comprehensive experimental and numerical investigation of radiant floor heating (RFH) systems integrated with phase change material (PCM)-based thermal energy storage (TES). The study compares two underfloor pipe configurations: double serpentine and spiral. It also looks at how well a paraffin wax PCM system works with compact heat exchanger-type TES units during winter in Iraq. Key performance indicators including discharge temperature, heat transfer rate, liquid fraction evolution, and temperature uniformity were assessed through in situ experimental measurements and ANSYS fluent simulations. Results demonstrate that the spiral design provides slightly more uniform temperature distribution… More >

Displaying 41-50 on page 5 of 1273. Per Page