Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (65)
  • Open Access

    ARTICLE

    Effects of Combined Heat and Mass Transfer on Entropy Generation due to MHD Nanofluid Flow over a Rotating Frame

    F. Mabood1, T. A. Yusuf2, A. M. Rashad3, W. A. Khan4,*, Hossam A. Nabwey5,6

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 575-587, 2021, DOI:10.32604/cmc.2020.012505 - 30 October 2020

    Abstract The current investigation aims to explore the combined effects of heat and mass transfer on free convection of Sodium alginate-Fe3O4 based Brinkmann type nanofluid flow over a vertical rotating frame. The Tiwari and Das nanofluid model is employed to examine the effects of dimensionless numbers, including Grashof, Eckert, and Schmidt numbers and governing parameters like solid volume fraction of nanoparticles, Hall current, magnetic field, viscous dissipation, and the chemical reaction on the physical quantities. The dimensionless nonlinear partial differential equations are solved using a finite difference method known as Runge-Kutta Fehlberg (RKF-45) method. The variation More >

  • Open Access

    ARTICLE

    EFFECTS OF VARIABLE VISCOSITY ON HEAT AND MASS TRANSFER BY MHD MIXED CONVECTION FLOW ALONG A VERTICAL CYLINDER EMBEDDED IN A NON-DARCY POROUS MEDIUM

    Saddam Atteyia Mohammad*

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-10, 2020, DOI:10.5098/hmt.14.7

    Abstract An analysis was performed to study the effects of variable viscosity on steady, laminar, hydromagnetic simultaneous heat and mass transfer by mixed convection flow along a vertical cylinder embedded in a non-Darcy porous medium. The analysis was performed for the case of power-law variations of both the surface temperature and concentration. The viscosity of the fluid is assumed to be an inverse linear function of temperature. Certain transformations were employed to transform the governing differential equations to non-similar form. The transformed equations were solved numerically by finite difference method. The entire regime of mixed convection… More >

  • Open Access

    ARTICLE

    Heat and Mass Transfer Characteristics of Alkali Metals in a Combined Wick of High-Temperature Heat Pipe

    Ping Yu1, *, Chuanhui Huang1, Lei Liu1, Huafeng Guo1, Chengqiang Liu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 267-280, 2020, DOI:10.32604/fdmp.2020.06528 - 21 April 2020

    Abstract To study the heat and mass transfer characteristics of alkali metals in a combined porous wick in high-temperature heat pipes, a three-dimensional (3-D) numerical model is constructed by using the finite volume method, Darcy’s theory, and the theory of local thermal equilibrium. The research finds that the pressure drop of fluids flowing through a combined porous wick exhibits an increasing trend with increasing flow velocity at the inlet and with decreasing permeability of the porous media; a combined porous wick of lower porosity and permeability and larger fluid velocity at the inlet is found to More >

  • Open Access

    ARTICLE

    Fractional Analysis of Viscous Fluid Flow with Heat and Mass Transfer Over a Flexible Rotating Disk

    Muhammad Shuaib1, Muhammad Bilal1, Muhammad Altaf Khan2, *, Sharaf J. Malebary3

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.1, pp. 377-400, 2020, DOI:10.32604/cmes.2020.08076 - 01 April 2020

    Abstract An unsteady viscous fluid flow with Dufour and Soret effect, which results in heat and mass transfer due to upward and downward motion of flexible rotating disk, has been studied. The upward or downward motion of non rotating disk results in two dimensional flow, while the vertical action and rotation of the disk results in three dimensional flow. By using an appropriate transformation the governing equations are transformed into the system of ordinary differential equations. The system of ordinary differential equations is further converted into first order differential equation by selecting suitable variables. Then, we More >

  • Open Access

    ARTICLE

    A CHEBYSHEV SPECTRAL METHOD FOR HEAT AND MASS TRANSFER IN MHD NANOFLUID FLOW WITH SPACE FRACTIONAL CONSTITUTIVE MODEL

    Shina D. Oloniiju , Sicelo P. Goqo, Precious Sibanda

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-8, 2019, DOI:10.5098/hmt.13.19

    Abstract In some recent studies, it has been suggested that non–Newtonian fluid flow can be modeled by a spatially non–local velocity, whose dynamics are described by a fractional derivative. In this study, we use the space fractional constitutive relation to model heat and mass transfer in a nanofluid. We present a numerically accurate algorithm for approximating solutions of the system of fractional ordinary differential equations describing the nanofluid flow. We present numerically stable differentiation matrices for both integer and fractional order derivatives defined by the one–sided Caputo derivative. The differentiation matrices are based on the series More >

  • Open Access

    ARTICLE

    STUDY ON HEAT AND MASS TRANSFER AND NONLINEAR CHARACTERISTICS WITH THERMAL AND SOLUTAL SOURCE IN A CAVITY

    Yubing Lia , Mo Yanga,*, Jian Lib , Zhiyun Wanga

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-8, 2019, DOI:10.5098/hmt.13.11

    Abstract Thermalsolutal convection induced by mass and heat source in horizontal cavity is investigated numerically based on SIMPLE algorithm with QUICK scheme. The high-concentration heat source is placed in the square cavity, and the cavity wall is low temperature and low concentration. The smoke is used as the diffusion medium, and the flow field, temperature and concentration of the fluid under different Rayleigh number, buoyancy ratio Nc, Soret numbers and Dufour numbers are analyzed systematically. Parameter study demonstrates that heat and mass transfer of thermosolutal convection are enhanced with increasing Rayleigh number or buoyancy ratio, and More >

  • Open Access

    ARTICLE

    Unsteady MHD Free Convective Flow Past a Vertical Porous Plate with Span-Wise Fluctuating Heat and Mass Transfer Effects

    S . Samantha Kumari1,*, G. Sankara Sekhar Raju2

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.5, pp. 471-489, 2019, DOI:10.32604/fdmp.2019.04222

    Abstract This paper investigates the chemical reaction and thermal radiation effects on unsteady MHD free convective flow past a vertical porous plate in the presence of heat absorption/generation. The novelty of present investigation is that the temperature and concentration of the plate are span wise cosinusoidally unsteady with time. The second order perturbation technique is employed to study the non-linear partial differential equations which govern the fluid flow. The effects of magnetic parameter, radiation, Eckert number, Schmidt number and chemical reaction parameters on velocity, temperature and concentration distributions as well as skin friction coefficients, the rate More >

  • Open Access

    ARTICLE

    Simulation of Heat and Mass Transfer in a Grain Pile on the Basis of a 2D Irregular Pore Network

    Pengxiao Chen1, Kai Huang1, 2, Fenghe Wang1, Weijun Xie1, Shuo Wei1, Deyong Yang1, *

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.4, pp. 367-389, 2019, DOI:10.32604/fdmp.2019.07762

    Abstract The so-called pore network model has great advantages in describing the process of heat and mass transfer in porous media. In order to construct a random two-dimensional (2D) irregular pore network model for an unconsolidated material, image processing technology was used to extract the required topological and geometric information from a 2D sample of soybean particles, and a dedicated algorithm was elaborated to merge some adjacent small pores. Based on the extracted information, a 2D pore network model including particle information was reconstructed and verified to reflect the pore structure of discrete particles. This More >

  • Open Access

    ABSTRACT

    Theoretical Analysis and Numerical Simulation of Multi-Fields Coupled Variation During Deepwater Hydrate-Bearing Reservoir Exploitation

    Ye Chen, Yonghai Gao, Guizhen Xin, Wang Yao, Dongzhi Gao, Litao Chen, Baojiang Sun*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.4, pp. 88-89, 2019, DOI:10.32604/icces.2019.05522

    Abstract Natural gas hydrate is regarded as a kind of potential alternative energy resource and attracts the attention all over the world. Geological surveys have found that most natural gas hydrates are buried at the bottom of the sea. Several development methods, such as depressurization, thermal stimulation and inhibitor injection are proposed gradually on the basis of hydrate special properties, obtaining certain trial-produce performance. It is of great significance to learn the flow rules underground for production safety guarantee and efficiency improvement. However, the special phase transition of hydrate between solid and fluid accompanied by energy… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Double Diffusive Mixed Convection in a Horizontal Annulus with Finned Inner Cylinder

    Cherfi Ryad1,*, Sadaoui Djamel1, Sahi Adel1, Mouloud Smail1

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.2, pp. 153-169, 2019, DOI:10.32604/fdmp.2019.04294

    Abstract The present work relates to a numerical investigation of double diffusive mixed convection around a horizontal annulus with a finned inner cylinder. The solutal and thermal buoyancy forces are sustained by maintaining the inner and outer cylinders at uniform temperatures and concentrations. Buoyancy effects are also considered, with the Boussinesq approximation. The forced convection effect is induced by the outer cylinder rotating with an angular velocity (ω) in an anti-clockwise direction. The studies are made for various combinations of dimensionless numbers; buoyancy ratio number (N), Lewis number (Le), Richardson number (Ri) and Grashof number (Gr). More >

Displaying 21-30 on page 3 of 65. Per Page