Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (58)
  • Open Access

    ARTICLE

    An Unsteady Oscillatory Flow of Generalized Casson Fluid with Heat and Mass Transfer: A Comparative Fractional Model

    Anis ur Rehman1, Farhad Ali1, Aamina Aamina2,3,*, Anees Imitaz1, Ilyas Khan4, Kottakkaran Sooppy Nisar5

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1445-1459, 2021, DOI:10.32604/cmc.2020.012457

    Abstract It is of high interest to study laminar flow with mass and heat transfer phenomena that occur in a viscoelastic fluid taken over a vertical plate due to its importance in many technological processes and its increased industrial applications. Because of its wide range of applications, this study aims at evaluating the solutions corresponding to Casson fluids’ oscillating flow using fractional-derivatives. As it has a combined mass-heat transfer effect, we considered the fluid flow upon an oscillatory infinite vertical-plate. Furthermore, we used two new fractional approaches of fractional derivatives, named AB (Atangana–Baleanu) and CF (Caputo–Fabrizio), on dimensionless governing equations and… More >

  • Open Access

    ARTICLE

    Effects of Combined Heat and Mass Transfer on Entropy Generation due to MHD Nanofluid Flow over a Rotating Frame

    F. Mabood1, T. A. Yusuf2, A. M. Rashad3, W. A. Khan4,*, Hossam A. Nabwey5,6

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 575-587, 2021, DOI:10.32604/cmc.2020.012505

    Abstract The current investigation aims to explore the combined effects of heat and mass transfer on free convection of Sodium alginate-Fe3O4 based Brinkmann type nanofluid flow over a vertical rotating frame. The Tiwari and Das nanofluid model is employed to examine the effects of dimensionless numbers, including Grashof, Eckert, and Schmidt numbers and governing parameters like solid volume fraction of nanoparticles, Hall current, magnetic field, viscous dissipation, and the chemical reaction on the physical quantities. The dimensionless nonlinear partial differential equations are solved using a finite difference method known as Runge-Kutta Fehlberg (RKF-45) method. The variation of dimensionless velocity, temperature, concentration,… More >

  • Open Access

    ARTICLE

    Heat and Mass Transfer Characteristics of Alkali Metals in a Combined Wick of High-Temperature Heat Pipe

    Ping Yu1, *, Chuanhui Huang1, Lei Liu1, Huafeng Guo1, Chengqiang Liu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 267-280, 2020, DOI:10.32604/fdmp.2020.06528

    Abstract To study the heat and mass transfer characteristics of alkali metals in a combined porous wick in high-temperature heat pipes, a three-dimensional (3-D) numerical model is constructed by using the finite volume method, Darcy’s theory, and the theory of local thermal equilibrium. The research finds that the pressure drop of fluids flowing through a combined porous wick exhibits an increasing trend with increasing flow velocity at the inlet and with decreasing permeability of the porous media; a combined porous wick of lower porosity and permeability and larger fluid velocity at the inlet is found to have a less uniformly distributed… More >

  • Open Access

    ARTICLE

    Fractional Analysis of Viscous Fluid Flow with Heat and Mass Transfer Over a Flexible Rotating Disk

    Muhammad Shuaib1, Muhammad Bilal1, Muhammad Altaf Khan2, *, Sharaf J. Malebary3

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.1, pp. 377-400, 2020, DOI:10.32604/cmes.2020.08076

    Abstract An unsteady viscous fluid flow with Dufour and Soret effect, which results in heat and mass transfer due to upward and downward motion of flexible rotating disk, has been studied. The upward or downward motion of non rotating disk results in two dimensional flow, while the vertical action and rotation of the disk results in three dimensional flow. By using an appropriate transformation the governing equations are transformed into the system of ordinary differential equations. The system of ordinary differential equations is further converted into first order differential equation by selecting suitable variables. Then, we generalize the model by using… More >

  • Open Access

    ARTICLE

    Unsteady MHD Free Convective Flow Past a Vertical Porous Plate with Span-Wise Fluctuating Heat and Mass Transfer Effects

    S . Samantha Kumari1,*, G. Sankara Sekhar Raju2

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.5, pp. 471-489, 2019, DOI:10.32604/fdmp.2019.04222

    Abstract This paper investigates the chemical reaction and thermal radiation effects on unsteady MHD free convective flow past a vertical porous plate in the presence of heat absorption/generation. The novelty of present investigation is that the temperature and concentration of the plate are span wise cosinusoidally unsteady with time. The second order perturbation technique is employed to study the non-linear partial differential equations which govern the fluid flow. The effects of magnetic parameter, radiation, Eckert number, Schmidt number and chemical reaction parameters on velocity, temperature and concentration distributions as well as skin friction coefficients, the rate of heat transfer and the… More >

  • Open Access

    ARTICLE

    Simulation of Heat and Mass Transfer in a Grain Pile on the Basis of a 2D Irregular Pore Network

    Pengxiao Chen1, Kai Huang1, 2, Fenghe Wang1, Weijun Xie1, Shuo Wei1, Deyong Yang1, *

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.4, pp. 367-389, 2019, DOI:10.32604/fdmp.2019.07762

    Abstract The so-called pore network model has great advantages in describing the process of heat and mass transfer in porous media. In order to construct a random two-dimensional (2D) irregular pore network model for an unconsolidated material, image processing technology was used to extract the required topological and geometric information from a 2D sample of soybean particles, and a dedicated algorithm was elaborated to merge some adjacent small pores. Based on the extracted information, a 2D pore network model including particle information was reconstructed and verified to reflect the pore structure of discrete particles. This method was used to reconstruct a… More >

  • Open Access

    ARTICLE

    Heat and Mass Transfer of a non-Newtonian Fluid Flow in an Anisotropic Porous Channel with Chemical Surface Reaction

    Z. Neffah1, H. Kahalerras1, *, B. Fersadou1

    FDMP-Fluid Dynamics & Materials Processing, Vol.14, No.1, pp. 39-56, 2018, DOI:10.3970/fdmp.2018.014.039

    Abstract A numerical study of heat and mass transfer in a non-Newtonian fluid in a parallel-plate channel partly filled with an anisotropic porous medium and subjected to an exothermic chemical reaction on its walls has been conducted. The flow field in the porous region has been modeled by the modified Brinkman-Forchheimer extended Darcy model for power-law fluids and a finite volume method has been used to solve the governing equations. The influence played by a variation of the anisotropic ratio on thermal conductivity, power-law index, Darcy number, and chemical reaction characteristics has been examined. We show that the anisotropy of a… More >

  • Open Access

    ABSTRACT

    Theoretical Analysis and Numerical Simulation of Multi-Fields Coupled Variation During Deepwater Hydrate-Bearing Reservoir Exploitation

    Ye Chen, Yonghai Gao, Guizhen Xin, Wang Yao, Dongzhi Gao, Litao Chen, Baojiang Sun*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.4, pp. 88-89, 2019, DOI:10.32604/icces.2019.05522

    Abstract Natural gas hydrate is regarded as a kind of potential alternative energy resource and attracts the attention all over the world. Geological surveys have found that most natural gas hydrates are buried at the bottom of the sea. Several development methods, such as depressurization, thermal stimulation and inhibitor injection are proposed gradually on the basis of hydrate special properties, obtaining certain trial-produce performance. It is of great significance to learn the flow rules underground for production safety guarantee and efficiency improvement. However, the special phase transition of hydrate between solid and fluid accompanied by energy and mass change makes it… More >

  • Open Access

    ABSTRACT

    Heat and mass transfer by natural convection in porous media due to opposing buoyancy effects with Boundary Domain Integral Method

    Janja Kramer, Renata Jecl, Leopold Skerget

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.12, No.4, pp. 147-148, 2009, DOI:10.3970/icces.2009.012.147

    Abstract A numerical study of double diffusive natural convection in porous media due to opposing buoyancy forces is reported, using the Boundary Domain Integral Method (BDIM). There have been several reported studies dealing with natural convection in porous media, mainly because of its importance in several industrial and technological applications. Less attention, however, has been dedicated to the so-called double diffusive problems, where density gradients occur due to the effects of combined temperature and concentration buoyancy. The current investigation is focused on the special problem, where the thermal and solutal buoyancy forces are opposing each other.
    The mathematical model of fluid… More >

  • Open Access

    ARTICLE

    Hydro-thermo-viscoelastic Based Finite Element Modeling of Apple Convective Drying Process

    M. Toujani1, R. Djebali2, L. Hassini1, S. Azzouz1, A. Belghith1

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.5, pp. 469-485, 2014, DOI:10.3970/cmes.2014.098.469

    Abstract In the present work we aim to simulate unsteady two-dimensional evolution of the moisture content, temperature and mechanical stress in a parallelepiped apple sample during convective drying. The model is based on the heat and mass transfer equations and the mechanical equilibrium equation under the assumptions of plane deformation, viscoelasticity and isotropic hydric shrinkage. The Finite Elements COMSOL Multiphysics solver is used to solve the developed model. The hydro-thermal model was validated on experimental data drawn in our laboratory for moisture and temperature internal profiles of the product. Excellent agreement has been obtained between numerical and measured data for different… More >

Displaying 41-50 on page 5 of 58. Per Page