Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16)
  • Open Access

    ARTICLE

    MEASUREMENTS OF THERMAL FIELD AT STACK EXTREMITIES OF A STANDING WAVE THERMOACOUSTIC HEAT PUMP

    Syeda Humaira Tasnima,*, Shohel Mahmudb, Roydon Andrew Frasera

    Frontiers in Heat and Mass Transfer, Vol.2, No.1, pp. 1-10, 2011, DOI:10.5098/hmt.v2.1.3006

    Abstract In this paper, we experimentally measure the temperature fields at different locations on the stack plate and in the surrounding working fluid in a standing wave thermoacoustic device. The temperature measurements at the stack extremities and at the neighboring gas show axial heat transfer at the stack extremities, as opposed to the hypothesis of a perfectly isolated stack used in the linear thermoacoustic theory. Four different mechanisms of heat transfer are identified at the stack extremities in the present study. This information is necessary for the optimization of the performances of practical thermoacoustic engines. For the selected operating conditions, temperature… More >

  • Open Access

    ARTICLE

    Modeling and Optimization of Solar Collector Design for the Improvement of Solar-Air Source Heat Pump Building Heating System

    Jiarui Wu1, Yuzhen Kang2, Junxiao Feng1,*

    Energy Engineering, Vol.120, No.12, pp. 2783-2802, 2023, DOI:10.32604/ee.2023.029358

    Abstract To enhance system stability, solar collectors have been integrated with air-source heat pumps. This integration facilitates the concurrent utilization of solar and air as energy sources for the system, leading to an improvement in the system's heat generation coefficient, overall efficiency, and stability. In this study, we focus on a residential building located in Lhasa as the target for heating purposes. Initially, we simulate and analyze a solar-air source heat pump combined heating system. Subsequently, while ensuring the system meets user requirements, we examine the influence of solar collector installation angles and collector area on the performance of the solar-air… More >

  • Open Access

    ARTICLE

    Research on Operation Optimization of Heating System Based on Electric Storage Coupled Solar Energy and Air Source Heat Pump

    Jingxiao Han1, Chuanzhao Zhang2, Lu Wang3,*, Zengjun Chang1, Qing Zhao1, Ying Shi4, Jiarui Wu5, Xiangfei Kong3

    Energy Engineering, Vol.120, No.9, pp. 1991-2011, 2023, DOI:10.32604/ee.2023.029749

    Abstract For heating systems based on electricity storage coupled with solar energy and an air source heat pump (ECSA), choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency. In this paper, four cities in three climatic regions in China were selected, namely Nanjing in the hot summer and cold winter region, Tianjin in the cold region, Shenyang and Harbin in the severe cold winter region. The levelized cost of heat (LCOH) was used as the economic evaluation index, and the energy consumption and emissions of different pollutants were analyzed. TRNSYS software was… More > Graphic Abstract

    Research on Operation Optimization of Heating System Based on Electric Storage Coupled Solar Energy and Air Source Heat Pump

  • Open Access

    ARTICLE

    Thermo-Economic Performance of Geothermal Driven High-Temperature Flash Tank Vapor Injection Heat Pump System: A Comparison Study

    Huashan Li1, Xiaoshuang Zhao1,2, Sihao Huang1,2, Lingbao Wang1, Jiongcong Chen1,*

    Energy Engineering, Vol.120, No.8, pp. 1817-1835, 2023, DOI:10.32604/ee.2023.027668

    Abstract Process heating constitutes a significant share of final energy consumption in the industrial sector around the world. In this paper, a high-temperature heat pump (HTHP) using flash tank vapor injection technology (FTVI) is proposed to develop low-temperature geothermal source for industrial process heating with temperature above 100°C. With heat sink output temperatures between 120°C and 150°C, the thermo-economic performance of the FTVI HTHP system using R1234ze(Z) as refrigerant is analyzed and also compared to the single-stage vapor compression (SSVC) system by employing the developed mathematical model. The coefficient of performance (COP), exergy efficiency (ηexe), net present value (NPV) and payback… More >

  • Open Access

    ARTICLE

    MODELING OF THE HEAT TRANSFER IN A SUPERCRITICAL CO2/DME MIXTURE FLOWING IN COOLED HELICALLY COILED TUBES

    Yan Chena , Qingxin Bab,*, Xuefang Lib

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-9, 2021, DOI:10.5098/hmt.16.18

    Abstract The heat transfer of supercritical CO2/DME mixtures was modeled in this study for a mass ratio of 95/5 for cooling in horizontal helically coiled tubes. The CO2/DME heat transfer coefficient was higher in the high-temperature zone than with pure CO2. The heat transfer of CO2/DME (95/5) was predicted for various mass fluxes, heat fluxes and pressures. The CO2/DME heat transfer coefficient increased with the mass flux due to the increased turbulent diffusion, and first increased but then decreased with the heat flux. The peak heat transfer coefficient of CO2/DME shifted toward the high-temperature region as the operating pressure increased. The… More >

  • Open Access

    ARTICLE

    HEAT AND MASS TRANSFER IN DRYING OF CARROT BY RADIO FREQUENCY ASSISTED HEAT PUMP DRYING

    Le Anh Duca , Pham Van Kienb,*, Nguyen Thanh Tanb, Doan Thanh Sonb, Nhanh Van Nguyenc, Ngoc Xuan Nguyend

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-6, 2023, DOI:10.5098/hmt.20.25

    Abstract This study focused on the heat and mass transfer in radio (RF) assisted heat pump (HP) drying of carrots. The experimental drying of carrot by RF assisted HP drying method was conducted to evaluate the effect of RF power on drying efficiency including drying rate and heating rate. The input drying parameters were drying air temperature of 45oC, drying air velocity of 2.5 m/s and RF power of 0, 0.5 and 1.5 kW, in which, RF power of 0 was corresponding to HP drying method. The experimental drying results showed that in RF assisted HP drying method, the drying rate… More >

  • Open Access

    ARTICLE

    Simulation Study of the Control Strategy of a DC Inverter Heat Pump Using a DC Distribution Network

    Siwei Han1,*, Xianglong Li2, Wei Zhao1, Linyu Wang1, Anqi Liang2, Shuang Zeng2

    Energy Engineering, Vol.120, No.6, pp. 1421-1444, 2023, DOI:10.32604/ee.2023.027094

    Abstract Photovoltaics, energy storage, direct current and flexibility (PEDF) are important pillars of achievement on the path to manufacturing nearly zero energy buildings (NZEBs). HVAC systems, which are an important part of public buildings, play a key role in adapting to PDEF systems. This research studied the basic principles and operational control strategies of a DC inverter heat pump using a DC distribution network with the aim of contributing to the development and application of small DC distribution systems. Along with the characteristics of a DC distribution network and different operating conditions, a DC inverter heat pump has the ability to… More >

  • Open Access

    ARTICLE

    Exergo-Environmental Study of a Recent Organic Solar Hybrid Heat Pump

    Rabeb Toujani, Nahla Bouaziz*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.4, pp. 991-1001, 2023, DOI:10.32604/fdmp.2022.022239

    Abstract A hybrid heat pump (compression/absorption) with an integrated thermal photovoltaic unit is studied. The considered working fluids are organic mixtures: R245fa/DMAC and R236fa/DMAC, chosen for their low Global Warming Potential. The main objective is the optimization of energy efficiency in order to minimize the environmental impact through the implementation of a sustainable strategy. It is shown that Exergy Analysis itself is a valuable tool in energy integration. Within the imposed framework of minimizing total annual costs, entropy analysis can be instrumental in determining the optimal plant concept, optimizing energy conversion and use, and improving profitability. The present results are discussed… More >

  • Open Access

    ARTICLE

    Experimental Analyses of Moderately High-Temperature Heat Pump Systems with R245fa and R1233zd(E)

    Ting Chen1, Oh Kyung Kwon2,*

    Energy Engineering, Vol.119, No.6, pp. 2231-2242, 2022, DOI:10.32604/ee.2022.021289

    Abstract With the limited production and use of R245fa, environmentally friendly refrigerant has attracted the attention of researchers. Due to the similar thermal characteristics, R1233zd(E) is considered to be an ideal substitute for R245fa in heat pump systems. In this study, the performance and economic analysis of heat pump systems with R245fa and R1233zd(E) as refrigerants are carried out. The results show that the total cost of R1233zd(E) system is more than 10% higher than that of R245fa system under the same heating load. With the increase of condensation temperature, the heating capacity of both systems decreases, and with the increase… More >

  • Open Access

    ARTICLE

    An Analytical Model for the Thermal Assessment of a Vertical Double U-Tube Ground-Coupled Heat Pump System in Steady-State Conditions

    Ali H. Tarrad*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 1111-1127, 2022, DOI:10.32604/fdmp.2022.021541

    Abstract An analytical model was built to predict the thermal resistance of a vertical double U-tube ground-coupled heat pump that operates under steady-state conditions. It included a geometry obstruction factor for heat transfer throughout the backfill medium due to the presence of the second loop. The verification of the model was achieved by the implementation of five different borehole configurations and a comparison with other correlations in the available literature. The model considered a U-tube spacing range between (2) and (4) times the U-tube outside diameter producing a geometry configuration factor range of (0.29–0.6). The results of the model were utilized… More >

Displaying 1-10 on page 1 of 16. Per Page