Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (125)
  • Open Access

    ARTICLE

    Research on the Method of Heat Preservation and Heating for the Drilling System of Polar Offshore Drilling Platform

    Yingkai Dong1,2, Chaohe Chen2,*, Guangyan Jia2, Lidai Wang3, Jian Bai1

    Energy Engineering, Vol.121, No.5, pp. 1173-1193, 2024, DOI:10.32604/ee.2024.046432 - 30 April 2024

    Abstract This study investigates the heat dissipation mechanism of the insulation layer and other plane insulation layers in the polar drilling rig system. Combining the basic theory of heat transfer with the environmental requirements of polar drilling operations and the characteristics of polar drilling processes, we analyze the factors that affect the insulation effect of the drilling rig system. These factors include the thermal conductivity of the insulation material, the thickness of the insulation layer, ambient temperature, and wind speed. We optimize the thermal insulation material of the polar drilling rig system using a steady-state method… More >

  • Open Access

    ARTICLE

    Surface Morphology and Thermo-Electrical Energy Analysis of Polyaniline (PANI) Incorporated Cotton Fabric

    Md. Shohan Parvez1,2, Md. Mustafizur Rahman1,3,*, Mahendran Samykano1, Mohammad Yeakub Ali4

    Energy Engineering, Vol.121, No.1, pp. 1-12, 2024, DOI:10.32604/ee.2023.027472 - 27 December 2023

    Abstract With the exponential development in wearable electronics, a significant paradigm shift is observed from rigid electronics to flexible wearable devices. Polyaniline (PANI) is considered as a dominant material in this sector, as it is endowed with the optical properties of both metal and semiconductors. However, its widespread application got delineated because of its irregular rigid form, level of conductivity, and precise choice of solvents. Incorporating PANI in textile materials can generate promising functionality for wearable applications. This research work employed a straightforward in-situ chemical oxidative polymerization to synthesize PANI on Cotton fabric surfaces with varying dopant… More >

  • Open Access

    ARTICLE

    Numerical Comparison of Stagnation Point Casson Fluid Stream over Flat and Cylindrical Surfaces with Joule Heating and Chemical Reaction Impacts

    Shaik Jaffrullah1, Sridhar Wuriti1,*, Raghavendra Ganesh Ganugapati2, Srinivasa Rao Talagadadevi1

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 407-426, 2023, DOI:10.32604/fhmt.2023.043305 - 30 November 2023

    Abstract In this particular study, we have considered the flow of Casson fluid over inclined flat and cylindrical surfaces, and have conducted a numerical analysis taking into account various physical factors such as mixed convection, stagnation point flow, MHD, thermal radiation, viscous dissipation, heat generation, Joule heating effect, variable thermal conductivity and chemical reaction. Flow over flat plate phenomena is observed aerospace industry, and airflow over solar panels, etc. Cylindrical surfaces are commonly used in several applications interacting with fluids, such as bridges, cables, and buildings, so the study of fluid flow over cylindrical surfaces is… More >

  • Open Access

    ARTICLE

    Numerical Examination of Free Convection Flow of Casson Ternary Hybrid Nanofluid across Magnetized Stretching Sheet Impacted by Newtonian Heating

    Mohammed Z. Swalmeh1,*, Firas A. Alwawi2, A. A. Altawallbeh3, Wejdan Mesa’adeen4, Feras M. Al Faqih4, Ahmad M. Awajan4

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 505-522, 2023, DOI:10.32604/fhmt.2023.044300 - 30 November 2023

    Abstract In current study, the influence of magnetic field (MHD) on heat transfer of natural convection boundary layer flow in Casson ternary hybrid nanofluid past a stretching sheet is studied using numerical simulation. The Newtonian heating boundary conditions that depend on the temperature and velocity terms are taken into this investigation. The particular dimensional governing equations, for the studied problem, are converted to the system of partial differential equations utilizing adequate similarity transformation. Consequently, the system of equations is numerically solved using well-known Kellar box numerical techniques. The obtained numerical results are in excellent approval with… More >

  • Open Access

    ARTICLE

    Amplitude and Period Effect on Heat Transfer in an Enclosure with Sinusoidal Heating from Below Using Lattice Boltzmann Method

    Noureddine Abouricha1,*, Chouaib Ennawaoui1,2, Mustapha El Alami3

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 523-537, 2023, DOI:10.32604/fhmt.2023.045914 - 30 November 2023

    Abstract This work presents a simulation of the phenomena of natural convection in an enclosure with a variable heating regime by the lattice Boltzmann method (LBM). We consider a square enclosure of side H filled with air (Pr = 0.71) and heated from below, with a hot portion of length L = 0.8 H, by imposing a sinusoidal temperature. The unheated segments of the bottom wall are treated as adiabatic, and one of the vertical walls features a cold region, while the remaining walls remain adiabatic. The outcomes of the two-dimensional (2D) problem are depicted through isotherms, streamlines, More >

  • Open Access

    ARTICLE

    Modeling and Optimization of Solar Collector Design for the Improvement of Solar-Air Source Heat Pump Building Heating System

    Jiarui Wu1, Yuzhen Kang2, Junxiao Feng1,*

    Energy Engineering, Vol.120, No.12, pp. 2783-2802, 2023, DOI:10.32604/ee.2023.029358 - 29 November 2023

    Abstract To enhance system stability, solar collectors have been integrated with air-source heat pumps. This integration facilitates the concurrent utilization of solar and air as energy sources for the system, leading to an improvement in the system's heat generation coefficient, overall efficiency, and stability. In this study, we focus on a residential building located in Lhasa as the target for heating purposes. Initially, we simulate and analyze a solar-air source heat pump combined heating system. Subsequently, while ensuring the system meets user requirements, we examine the influence of solar collector installation angles and collector area on More >

  • Open Access

    PROCEEDINGS

    Simulation of Reheating Furnace for Steel Billets by a Meshless Method

    Qingguo Liu1,2, Umut Hanoglu1,2, Božidar Šarler1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09609

    Abstract A simulation of reheating furnace in a steel production line where the steel billets are heated from room temperature up to 1200 ˚C, is carried out using a novel meshless solution procedure. The reheating of the steel billets before the continuous hot-rolling process should be employed to dissolve alloying elements as much as possible and redistribute the carbon. In this work, governing equations are solved by the local radial basis function collocation method (LRBFCM) in a strong form with explicit time-stepping. The solution of the diffusion equations for the temperature and carbon concentration fields is… More >

  • Open Access

    PROCEEDINGS

    The Effect of Heating Rate on Sintering Mechanism of Alumina Nanoparticles

    Dangqiang Wang1, Hai Mei1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09455

    Abstract The densification process of sintered alumina is mainly controlled by surface, lattice, and interface diffusion, and many experimental researches show that heating rate can affect the transfer of matter. Thus, to further reveal the effect of heating rate on sintering mechanism of alumina nanoparticle, molecular dynamic simulations were performed at five different heating rates to examine the migration of atoms and evolution of microstructure in heating stage. Results show that the sintering process of heating is a typical thermal activation process. High displacement response temperature is caused by high heating rate, which results in the More >

  • Open Access

    ARTICLE

    Computational Analysis of Heat and Mass Transfer in Magnetized Darcy-Forchheimer Hybrid Nanofluid Flow with Porous Medium and Slip Effects

    Nosheen Fatima1, Nabeela Kousar1, Khalil Ur Rehman2,3,*, Wasfi Shatanawi2,4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2311-2330, 2023, DOI:10.32604/cmes.2023.026994 - 03 August 2023

    Abstract A computational analysis of magnetized hybrid Darcy-Forchheimer nanofluid flow across a flat surface is presented in this work. For the study of heat and mass transfer aspects viscous dissipation, activation energy, Joule heating, thermal radiation, and heat generation effects are considered. The suspension of nanoparticles singlewalled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are created by hybrid nanofluids. However, single-walled carbon nanotubes (SWCNTs) produce nanofluids, with water acting as conventional fluid, respectively. Nonlinear partial differential equations (PDEs) that describe the ultimate flow are converted to nonlinear ordinary differential equations (ODEs) using appropriate similarity transformation.… More >

  • Open Access

    ARTICLE

    Research on Operation Optimization of Heating System Based on Electric Storage Coupled Solar Energy and Air Source Heat Pump

    Jingxiao Han1, Chuanzhao Zhang2, Lu Wang3,*, Zengjun Chang1, Qing Zhao1, Ying Shi4, Jiarui Wu5, Xiangfei Kong3

    Energy Engineering, Vol.120, No.9, pp. 1991-2011, 2023, DOI:10.32604/ee.2023.029749 - 31 July 2023

    Abstract For heating systems based on electricity storage coupled with solar energy and an air source heat pump (ECSA), choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency. In this paper, four cities in three climatic regions in China were selected, namely Nanjing in the hot summer and cold winter region, Tianjin in the cold region, Shenyang and Harbin in the severe cold winter region. The levelized cost of heat (LCOH) was used as the economic evaluation index, and the energy consumption and emissions of different pollutants… More > Graphic Abstract

    Research on Operation Optimization of Heating System Based on Electric Storage Coupled Solar Energy and Air Source Heat Pump

Displaying 21-30 on page 3 of 125. Per Page