Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (132)
  • Open Access

    ARTICLE

    Optimal Allocation of Multiple Energy Storage Capacity in Industrial Park Considering Demand Response and Laddered Carbon Trading

    Jingshuai Pang1,2, Songcen Wang1, Hongyin Chen1,2,*, Xiaoqiang Jia1, Yi Guo1, Ling Cheng1, Xinhe Zhang1, Jianfeng Li1

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.070256 - 27 December 2025

    Abstract To achieve the goals of sustainable development of the energy system and the construction of a low-carbon society, this study proposes a multi-energy storage collaborative optimization strategy for industrial park that integrates the laddered carbon trading mechanism with demand response. Firstly, a dual dimensional DR model is constructed based on the characteristics of load elasticity. The alternative DR enables flexible substitution of energy loads through complementary conversion of electricity/heat/cold multi-energy sources, while the price DR relies on time-of-use electricity price signals to guide load spatiotemporal migration; Secondly, the LCT mechanism is introduced to achieve optimal… More >

  • Open Access

    ARTICLE

    Analytical Modeling of Internal Thermal Mass: Transient Heat Conduction in a Sphere under Constant, Exponential, and Periodic Ambient Temperatures

    Liangjian Lei1,2, Yihang Lu1,2,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 2109-2126, 2025, DOI:10.32604/fhmt.2025.072643 - 31 December 2025

    Abstract Internal thermal mass, such as furniture and partitions, plays a crucial role in enhancing building energy efficiency and indoor thermal comfort by passively regulating temperature fluctuations. However, the irregular geometry of these elements poses a significant challenge for accurate modeling in building energy simulations. This study addresses this gap by developing a rigorous analytical model that idealizes internal thermal mass as a sphere, thereby capturing multi-directional heat conduction effects that are neglected in simpler one-dimensional slab models. The transient heat conduction within the sphere is solved analytically using Duhamel’s theorem for three representative indoor air… More >

  • Open Access

    ARTICLE

    Numerical and Experimental Study of Thermal Storage Energy in a Building with Various Pipeline Design under Floor—Case Study

    Rafah H. Zaidan*, Najim A. Jasim

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1595-1620, 2025, DOI:10.32604/fhmt.2025.068205 - 31 October 2025

    Abstract This paper presents a comprehensive experimental and numerical investigation of radiant floor heating (RFH) systems integrated with phase change material (PCM)-based thermal energy storage (TES). The study compares two underfloor pipe configurations: double serpentine and spiral. It also looks at how well a paraffin wax PCM system works with compact heat exchanger-type TES units during winter in Iraq. Key performance indicators including discharge temperature, heat transfer rate, liquid fraction evolution, and temperature uniformity were assessed through in situ experimental measurements and ANSYS fluent simulations. Results demonstrate that the spiral design provides slightly more uniform temperature distribution… More >

  • Open Access

    ARTICLE

    Deep Learning Models for Detecting Cheating in Online Exams

    Siham Essahraui1, Ismail Lamaakal1, Yassine Maleh2,*, Khalid El Makkaoui1, Mouncef Filali Bouami1, Ibrahim Ouahbi1, May Almousa3, Ali Abdullah S. AlQahtani4, Ahmed A. Abd El-Latif5,6

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3151-3183, 2025, DOI:10.32604/cmc.2025.067359 - 23 September 2025

    Abstract The rapid shift to online education has introduced significant challenges to maintaining academic integrity in remote assessments, as traditional proctoring methods fall short in preventing cheating. The increase in cheating during online exams highlights the need for efficient, adaptable detection models to uphold academic credibility. This paper presents a comprehensive analysis of various deep learning models for cheating detection in online proctoring systems, evaluating their accuracy, efficiency, and adaptability. We benchmark several advanced architectures, including EfficientNet, MobileNetV2, ResNet variants and more, using two specialized datasets (OEP and OP) tailored for online proctoring contexts. Our findings More >

  • Open Access

    ARTICLE

    Analysis of the Use of Geothermal Energy for Heating in Azerbaijan

    Orkhan Jafarli*

    Energy Engineering, Vol.122, No.9, pp. 3595-3608, 2025, DOI:10.32604/ee.2025.067982 - 26 August 2025

    Abstract This study investigates the feasibility and efficiency of geothermal energy for heating applications in Azerbaijan, with a specific focus on the Khachmaz region. Despite the country’s growing interest in sustainable energy, limited research has addressed the potential of ground-source heat pump (GSHP) systems under local climatic and soil conditions. To address this gap, the study employs GeoT*SOL simulation to evaluate system performance, incorporating site-specific parameters such as soil thermal conductivity, heating demand profiles, and regional weather data. The results show that the GSHP system achieves a maximum seasonal performance factor (SPF) of 5.62 and an… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Air-Assisted Heating for Cold-Start in Cathode-Open Proton Exchange Membrane Fuel Cells

    Wei Shi1,2, Shusheng Xiong1,2,3,*, Wei Li2,3, Kai Meng4, Qingsheng Liu4

    Energy Engineering, Vol.122, No.9, pp. 3507-3523, 2025, DOI:10.32604/ee.2025.065579 - 26 August 2025

    Abstract In the realm of all-electric aircraft research, the integration of cathode-open proton exchange membrane fuel cells (PEMFC) with lithium batteries as a hybrid power source for small to medium-sized unmanned aerial vehicles (UAVs) has garnered significant attention. The PEMFC, serving as the primary energy supply, markedly extends the UAV’s operational endurance. However, due to payload limitations and spatial constraints in the airframe layout of UAVs, the stack requires customized adaptation. Moreover, the implementation of auxiliary systems to facilitate cold starts of the PEMFC under low-temperature conditions is not feasible. Relying solely on thermal insulation measures… More >

  • Open Access

    ARTICLE

    Short-Term Penetration beyond Diffusion Spinodal of a Mixture: Interaction of Liquid-Liquid and Liquid-Vapour Transitions

    Alexey Melkikh1,2, Sergey Rutin2, Dmitrii V. Antonov3, Pavel Skripov2,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.3, pp. 721-737, 2025, DOI:10.32604/fhmt.2025.066528 - 30 June 2025

    Abstract The article considers a relaxation of the water/polypropylene glycol-425 solution with a lower critical solution temperature (LCST) following its pulsed superheating concerning liquid-liquid and liquid-vapor equilibrium lines, as well as the liquid-liquid spinodal. Superheating was performed using the pulsed heat generation method in a micro-sized wire probe. The main heating mode was the constant (over the pulse length) power mode. Characteristic heating rates ranged from 0.05 × 105 to 2 × 105 K/s, while the degree of superheating concerning the spinodal was up to 200 K. The temperature of spontaneous boiling-up and the amplitude of the… More > Graphic Abstract

    Short-Term Penetration beyond Diffusion Spinodal of a Mixture: Interaction of Liquid-Liquid and Liquid-Vapour Transitions

  • Open Access

    ARTICLE

    Impact of Pyrolysis Parameters on Biochar and Activated Carbon Properties from Cistus ladaniferus for Environmental Applications

    Hammadi El Farissi1,2,*, Anass Choukoud1,2, Bouchaib Manoun3,4, Mohamed El Massaoudi5,6, Abdelmonaem Talhaoui2

    Journal of Renewable Materials, Vol.13, No.6, pp. 1251-1266, 2025, DOI:10.32604/jrm.2025.02025-0004 - 23 June 2025

    Abstract In light of the growing urgency to address environmental degradation and improve carbon sequestration strategies, this study rigorously investigates the potential of Cistus ladaniferus as a viable feedstock for biochar and activated carbon production. The influence of pyrolysis temperature, heating rate and particle size on biochar yield was systematically examined. The results demonstrate that increasing pyrolysis temperature and heating rate significantly reduces biochar yield, while particle size plays a crucial role in thermal degradation and biochar retention. To evaluate the structural and chemical properties of the materials, various characterization techniques were employed, including Fourier-transform infrared spectroscopy… More > Graphic Abstract

    Impact of Pyrolysis Parameters on Biochar and Activated Carbon Properties from <i>Cistus ladaniferus</i> for Environmental Applications

  • Open Access

    ARTICLE

    Analytical Investigation of MFD Viscosity and Ohmic Heating in MHD Boundary Layers of Jeffrey Fluid

    K. Sinivasan1, N. Vishnu Ganesh1,*, G. Hirankumar2, M. Al-Mdallal Qasem3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1029-1049, 2025, DOI:10.32604/fdmp.2025.064503 - 30 May 2025

    Abstract In this study, an analytical investigation is carried out to assess the impact of magnetic field-dependent (MFD) viscosity on the momentum and heat transfers inside the boundary layer of a Jeffrey fluid flowing over a horizontally elongating sheet, while taking into account the effects of ohmic dissipation. By applying similarity transformations, the original nonlinear governing equations with partial derivatives are transformed into ordinary differential equations. Analytical expressions for the momentum and energy equations are derived, incorporating the influence of MFD viscosity on the Jeffrey fluid. Then the impact of different parameters is assessed, including magnetic More >

  • Open Access

    ARTICLE

    Heat Transfer and Flow Dynamics of Ternary Hybrid Nanofluid over a Permeable Disk under Magnetic Field and Joule Heating Effects

    Umi Nadrah Hussein1, Najiyah Safwa Khashi’ie1,*, Norihan Md Arifin2, Ioan Pop3

    Frontiers in Heat and Mass Transfer, Vol.23, No.2, pp. 383-395, 2025, DOI:10.32604/fhmt.2025.063023 - 25 April 2025

    Abstract This study investigates the heat transfer and flow dynamics of a ternary hybrid nanofluid comprising alumina, copper, and silica/titania nanoparticles dispersed in water. The analysis considers the effects of suction, magnetic field, and Joule heating over a permeable shrinking disk. A mathematical model is developed and converted to a system of differential equations using similarity transformation which then, solved numerically using the bvp4c solver in Matlab software. The study introduces a novel comparative analysis of alumina-copper-silica and alumina-copper-titania nanofluids, revealing distinct thermal conductivity behaviors and identifying critical suction values necessary for flow stabilization. Dual solutions… More >

Displaying 1-10 on page 1 of 132. Per Page