Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (28)
  • Open Access

    ARTICLE

    Enhancing Wireless Sensor Network Efficiency through Al-Biruni Earth Radius Optimization

    Reem Ibrahim Alkanhel1, Doaa Sami Khafaga2, Ahmed Mohamed Zaki3, Marwa M. Eid4,5, Abdyalaziz A. Al-Mooneam6, Abdelhameed Ibrahim7, S. K. Towfek3,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3549-3568, 2024, DOI:10.32604/cmc.2024.049582

    Abstract The networks of wireless sensors provide the ground for a range of applications, including environmental monitoring and industrial operations. Ensuring the networks can overcome obstacles like power and communication reliability and sensor coverage is the crux of network optimization. Network infrastructure planning should be focused on increasing performance, and it should be affected by the detailed data about node distribution. This work recommends the creation of each sensor’s specs and radius of influence based on a particular geographical location, which will contribute to better network planning and design. By using the ARIMA model for time… More >

  • Open Access

    ARTICLE

    Prediction of Ground Vibration Induced by Rock Blasting Based on Optimized Support Vector Regression Models

    Yifan Huang1, Zikang Zhou1,2, Mingyu Li1, Xuedong Luo1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3147-3165, 2024, DOI:10.32604/cmes.2024.045947

    Abstract Accurately estimating blasting vibration during rock blasting is the foundation of blasting vibration management. In this study, Tuna Swarm Optimization (TSO), Whale Optimization Algorithm (WOA), and Cuckoo Search (CS) were used to optimize two hyperparameters in support vector regression (SVR). Based on these methods, three hybrid models to predict peak particle velocity (PPV) for bench blasting were developed. Eighty-eight samples were collected to establish the PPV database, eight initial blasting parameters were chosen as input parameters for the prediction model, and the PPV was the output parameter. As predictive performance evaluation indicators, the coefficient of More >

  • Open Access

    ARTICLE

    An Enhanced Equilibrium Optimizer for Solving Optimization Tasks

    Yuting Liu1, Hongwei Ding1,*, Zongshan Wang1,*, Gaurav Dhiman2,3,4, Zhijun Yang1, Peng Hu5

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2385-2406, 2023, DOI:10.32604/cmc.2023.039883

    Abstract The equilibrium optimizer (EO) represents a new, physics-inspired metaheuristic optimization approach that draws inspiration from the principles governing the control of volume-based mixing to achieve dynamic mass equilibrium. Despite its innovative foundation, the EO exhibits certain limitations, including imbalances between exploration and exploitation, the tendency to local optima, and the susceptibility to loss of population diversity. To alleviate these drawbacks, this paper introduces an improved EO that adopts three strategies: adaptive inertia weight, Cauchy mutation, and adaptive sine cosine mechanism, called SCEO. Firstly, a new update formula is conceived by incorporating an adaptive inertia weight… More >

  • Open Access

    ARTICLE

    Ensemble of Population-Based Metaheuristic Algorithms

    Hao Li, Jun Tang*, Qingtao Pan, Jianjun Zhan, Songyang Lao

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2835-2859, 2023, DOI:10.32604/cmc.2023.038670

    Abstract No optimization algorithm can obtain satisfactory results in all optimization tasks. Thus, it is an effective way to deal with the problem by an ensemble of multiple algorithms. This paper proposes an ensemble of population-based metaheuristics (EPM) to solve single-objective optimization problems. The design of the EPM framework includes three stages: the initial stage, the update stage, and the final stage. The framework applies the transformation of the real and virtual population to balance the problem of exploration and exploitation at the population level and uses an elite strategy to communicate among virtual populations. The… More >

  • Open Access

    ARTICLE

    An Efficient Approach Based on Remora Optimization Algorithm and Levy Flight for Intrusion Detection

    Abdullah Mujawib Alashjaee*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 235-254, 2023, DOI:10.32604/iasc.2023.036247

    Abstract With the recent increase in network attacks by threats, malware, and other sources, machine learning techniques have gained special attention for intrusion detection due to their ability to classify hundreds of features into normal system behavior or an attack attempt. However, feature selection is a vital preprocessing stage in machine learning approaches. This paper presents a novel feature selection-based approach, Remora Optimization Algorithm-Levy Flight (ROA-LF), to improve intrusion detection by boosting the ROA performance with LF. The developed ROA-LF is assessed using several evaluation measures on five publicly available datasets for intrusion detection: Knowledge discovery More >

  • Open Access

    ARTICLE

    Smart Fraud Detection in E-Transactions Using Synthetic Minority Oversampling and Binary Harris Hawks Optimization

    Chandana Gouri Tekkali, Karthika Natarajan*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3171-3187, 2023, DOI:10.32604/cmc.2023.036865

    Abstract Fraud Transactions are haunting the economy of many individuals with several factors across the globe. This research focuses on developing a mechanism by integrating various optimized machine-learning algorithms to ensure the security and integrity of digital transactions. This research proposes a novel methodology through three stages. Firstly, Synthetic Minority Oversampling Technique (SMOTE) is applied to get balanced data. Secondly, SMOTE is fed to the nature-inspired Meta Heuristic (MH) algorithm, namely Binary Harris Hawks Optimization (BinHHO), Binary Aquila Optimization (BAO), and Binary Grey Wolf Optimization (BGWO), for feature selection. BinHHO has performed well when compared with More >

  • Open Access

    ARTICLE

    A Double Adaptive Random Spare Reinforced Sine Cosine Algorithm

    Abdelazim G. Hussien1,2, Guoxi Liang3, Huiling Chen4,*, Haiping Lin5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2267-2289, 2023, DOI:10.32604/cmes.2023.024247

    Abstract Many complex optimization problems in the real world can easily fall into local optimality and fail to find the optimal solution, so more new techniques and methods are needed to solve such challenges. Metaheuristic algorithms have received a lot of attention in recent years because of their efficient performance and simple structure. Sine Cosine Algorithm (SCA) is a recent Metaheuristic algorithm that is based on two trigonometric functions Sine & Cosine. However, like all other metaheuristic algorithms, SCA has a slow convergence and may fail in sub-optimal regions. In this study, an enhanced version of More >

  • Open Access

    ARTICLE

    An Improved Reptile Search Algorithm Based on Cauchy Mutation for Intrusion Detection

    Salahahaldeen Duraibi*

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2509-2525, 2023, DOI:10.32604/csse.2023.036119

    Abstract With the growth of the discipline of digital communication, the topic has acquired more attention in the cybersecurity medium. The Intrusion Detection (ID) system monitors network traffic to detect malicious activities. The paper introduces a novel Feature Selection (FS) approach for ID. Reptile Search Algorithm (RSA)—is a new optimization algorithm; in this method, each agent searches a new region according to the position of the host, which makes the algorithm suffers from getting stuck in local optima and a slow convergence rate. To overcome these problems, this study introduces an improved RSA approach by integrating… More >

  • Open Access

    ARTICLE

    Trusted Cluster-Based Communication for Wireless Sensor Network Using Meta-Heuristic Algorithms

    Pankaj Kumar Sharma1,*, Uma Shankar Modani2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1935-1951, 2023, DOI:10.32604/csse.2023.031509

    Abstract The mobile transient and sensor network’s routing algorithm detects available multi-hop paths between source and destination nodes. However, some methods are not as reliable or trustworthy as expected. Therefore, finding a reliable method is an important factor in improving communication security. For further enhancement of protected communication, we suggest a trust cluster based secure routing (TCSR) framework for wireless sensor network (WSN) using optimization algorithms. First, we introduce an efficient cluster formation using a modified tug of war optimization (MTWO) algorithm, which provides load-balanced clusters for energy-efficient data transmission. Second, we illustrate the optimal head… More >

  • Open Access

    ARTICLE

    Training Neuro-Fuzzy by Using Meta-Heuristic Algorithms for MPPT

    Ceren Baştemur Kaya1, Ebubekir Kaya2,*, Göksel Gökkuş3

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 69-84, 2023, DOI:10.32604/csse.2023.030598

    Abstract It is one of the topics that have been studied extensively on maximum power point tracking (MPPT) recently. Traditional or soft computing methods are used for MPPT. Since soft computing approaches are more effective than traditional approaches, studies on MPPT have shifted in this direction. This study aims comparison of performance of seven meta-heuristic training algorithms in the neuro-fuzzy training for MPPT. The meta-heuristic training algorithms used are particle swarm optimization (PSO), harmony search (HS), cuckoo search (CS), artificial bee colony (ABC) algorithm, bee algorithm (BA), differential evolution (DE) and flower pollination algorithm (FPA). The… More >

Displaying 1-10 on page 1 of 28. Per Page