Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (53)
  • Open Access

    ARTICLE

    Improving the Transmission Security of Vein Images Using a Bezier Curve and Long Short-Term Memory

    Ahmed H. Alhadethi1,*, Ikram Smaoui2, Ahmed Fakhfakh3, Saad M. Darwish4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4825-4844, 2024, DOI:10.32604/cmc.2024.047852

    Abstract The act of transmitting photos via the Internet has become a routine and significant activity. Enhancing the security measures to safeguard these images from counterfeiting and modifications is a critical domain that can still be further enhanced. This study presents a system that employs a range of approaches and algorithms to ensure the security of transmitted venous images. The main goal of this work is to create a very effective system for compressing individual biometrics in order to improve the overall accuracy and security of digital photographs by means of image compression. This paper introduces… More >

  • Open Access

    ARTICLE

    Pairwise Reversible Data Hiding for Medical Images with Contrast Enhancement

    Isaac Asare Boateng1,2,*, Lord Amoah2, Isogun Toluwalase Adewale3

    Journal of Information Hiding and Privacy Protection, Vol.6, pp. 1-19, 2024, DOI:10.32604/jihpp.2024.051354

    Abstract Contrast enhancement in medical images has been vital since the prevalence of image representations in healthcare. In this research, the PRDHMCE (pairwise reversible data hiding for medical images with contrast enhancement) algorithm is proposed as an automatic contrast enhancement (CE) method for medical images based on region of interest (ROI) and non-region of interest (NROI). The PRDHMCE algorithm strategically enhances the ROI after segmentation using histogram stretching and data embedding. An initial histogram evaluation compares histogram bins with their neighbours to select the bin with the maximum pixel count. The selected bin is set as More >

  • Open Access

    ARTICLE

    Multiple Perspective of Multipredictor Mechanism and Multihistogram Modification for High-Fidelity Reversible Data Hiding

    Kai Gao1, Chin-Chen Chang1,*, Chia-Chen Lin2,*

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 813-833, 2024, DOI:10.32604/csse.2024.038308

    Abstract Reversible data hiding is a confidential communication technique that takes advantage of image file characteristics, which allows us to hide sensitive data in image files. In this paper, we propose a novel high-fidelity reversible data hiding scheme. Based on the advantage of the multipredictor mechanism, we combine two effective prediction schemes to improve prediction accuracy. In addition, the multihistogram technique is utilized to further improve the image quality of the stego image. Moreover, a model of the grouped knapsack problem is used to speed up the search for the suitable embedding bin in each sub-histogram. More >

  • Open Access

    ARTICLE

    Nodule Detection Using Local Binary Pattern Features to Enhance Diagnostic Decisions

    Umar Rashid1,2,*, Arfan Jaffar1,2, Muhammad Rashid3, Mohammed S. Alshuhri4, Sheeraz Akram1,4,5

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3377-3390, 2024, DOI:10.32604/cmc.2024.046320

    Abstract Pulmonary nodules are small, round, or oval-shaped growths on the lungs. They can be benign (noncancerous) or malignant (cancerous). The size of a nodule can range from a few millimeters to a few centimeters in diameter. Nodules may be found during a chest X-ray or other imaging test for an unrelated health problem. In the proposed methodology pulmonary nodules can be classified into three stages. Firstly, a 2D histogram thresholding technique is used to identify volume segmentation. An ant colony optimization algorithm is used to determine the optimal threshold value. Secondly, geometrical features such as More >

  • Open Access

    ARTICLE

    Unsupervised Color Segmentation with Reconstructed Spatial Weighted Gaussian Mixture Model and Random Color Histogram

    Umer Sadiq Khan1,2,*, Zhen Liu1,2,*, Fang Xu1,2, Muhib Ullah Khan3,4, Lerui Chen5, Touseef Ahmed Khan4,6, Muhammad Kashif Khattak7, Yuquan Zhang8

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3323-3348, 2024, DOI:10.32604/cmc.2024.046094

    Abstract Image classification and unsupervised image segmentation can be achieved using the Gaussian mixture model. Although the Gaussian mixture model enhances the flexibility of image segmentation, it does not reflect spatial information and is sensitive to the segmentation parameter. In this study, we first present an efficient algorithm that incorporates spatial information into the Gaussian mixture model (GMM) without parameter estimation. The proposed model highlights the residual region with considerable information and constructs color saliency. Second, we incorporate the content-based color saliency as spatial information in the Gaussian mixture model. The segmentation is performed by clustering… More >

  • Open Access

    ARTICLE

    Multiple-Object Tracking Using Histogram Stamp Extraction in CCTV Environments

    Ye-Yeon Kang1, Geon Park1, Hyun Yoo2, Kyungyong Chung1,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3619-3635, 2023, DOI:10.32604/cmc.2023.043566

    Abstract Object tracking, an important technology in the field of image processing and computer vision, is used to continuously track a specific object or person in an image. This technology may be effective in identifying the same person within one image, but it has limitations in handling multiple images owing to the difficulty in identifying whether the object appearing in other images is the same. When tracking the same object using two or more images, there must be a way to determine that objects existing in different images are the same object. Therefore, this paper attempts… More >

  • Open Access

    ARTICLE

    Alzheimer’s Disease Stage Classification Using a Deep Transfer Learning and Sparse Auto Encoder Method

    Deepthi K. Oommen*, J. Arunnehru

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 793-811, 2023, DOI:10.32604/cmc.2023.038640

    Abstract Alzheimer’s Disease (AD) is a progressive neurological disease. Early diagnosis of this illness using conventional methods is very challenging. Deep Learning (DL) is one of the finest solutions for improving diagnostic procedures’ performance and forecast accuracy. The disease’s widespread distribution and elevated mortality rate demonstrate its significance in the older-onset and younger-onset age groups. In light of research investigations, it is vital to consider age as one of the key criteria when choosing the subjects. The younger subjects are more susceptible to the perishable side than the older onset. The proposed investigation concentrated on the… More >

  • Open Access

    ARTICLE

    Cancer Regions in Mammogram Images Using ANFIS Classifier Based Probability Histogram Segmentation Algorithm

    V. Swetha*, G. Vadivu

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 707-726, 2023, DOI:10.32604/iasc.2023.035483

    Abstract Every year, the number of women affected by breast tumors is increasing worldwide. Hence, detecting and segmenting the cancer regions in mammogram images is important to prevent death in women patients due to breast cancer. The conventional methods obtained low sensitivity and specificity with cancer region segmentation accuracy. The high-resolution standard mammogram images were supported by conventional methods as one of the main drawbacks. The conventional methods mostly segmented the cancer regions in mammogram images concerning their exterior pixel boundaries. These drawbacks are resolved by the proposed cancer region detection methods stated in this paper.… More >

  • Open Access

    ARTICLE

    Histogram-Based Decision Support System for Extraction and Classification of Leukemia in Blood Smear Images

    Neenavath Veeraiah1,*, Youseef Alotaibi2, Ahmad F. Subahi3

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1879-1900, 2023, DOI:10.32604/csse.2023.034658

    Abstract An abnormality that develops in white blood cells is called leukemia. The diagnosis of leukemia is made possible by microscopic investigation of the smear in the periphery. Prior training is necessary to complete the morphological examination of the blood smear for leukemia diagnosis. This paper proposes a Histogram Threshold Segmentation Classifier (HTsC) for a decision support system. The proposed HTsC is evaluated based on the color and brightness variation in the dataset of blood smear images. Arithmetic operations are used to crop the nucleus based on automated approximation. White Blood Cell (WBC) segmentation is calculated… More >

  • Open Access

    ARTICLE

    An Intelligent Decision Support System for Lung Cancer Diagnosis

    Ahmed A. Alsheikhy1,*, Yahia F. Said1, Tawfeeq Shawly2

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 799-817, 2023, DOI:10.32604/csse.2023.035269

    Abstract Lung cancer is the leading cause of cancer-related death around the globe. The treatment and survival rates among lung cancer patients are significantly impacted by early diagnosis. Most diagnostic techniques can identify and classify only one type of lung cancer. It is crucial to close this gap with a system that detects all lung cancer types. This paper proposes an intelligent decision support system for this purpose. This system aims to support the quick and early detection and classification of all lung cancer types and subtypes to improve treatment and save lives. Its algorithm uses… More >

Displaying 1-10 on page 1 of 53. Per Page