Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (152)
  • Open Access

    PROCEEDINGS

    Dynamic Friction Loading Experimental Techniques Based on Split Hopkinson Bar

    Wenxuan Du1, Zhongwei Mou2, Xuanfu He1, Jianping Yin1, Yinggang Miao1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011421

    Abstract High-speed friction and wear are usually occurring in the service life of advanced equipment, and their behavior even influences service safety. However, there is still technique gap in accurately obtaining the parameters during dynamic friction induced by high-speed equipment. This gap is primarily stemmed from the available dynamic friction loading techniques with poor controllability. In this work, a novel dynamic friction apparatus is designed based on split Hopkinson bar technique. The loading principle is from stress wave generated by striker bar hitting the incident bar, which forces the sandwiched friction pair to slide with a… More >

  • Open Access

    ARTICLE

    Q-Learning-Assisted Meta-Heuristics for Scheduling Distributed Hybrid Flow Shop Problems

    Qianyao Zhu1, Kaizhou Gao1,*, Wuze Huang1, Zhenfang Ma1, Adam Slowik2

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3573-3589, 2024, DOI:10.32604/cmc.2024.055244 - 12 September 2024

    Abstract The flow shop scheduling problem is important for the manufacturing industry. Effective flow shop scheduling can bring great benefits to the industry. However, there are few types of research on Distributed Hybrid Flow Shop Problems (DHFSP) by learning assisted meta-heuristics. This work addresses a DHFSP with minimizing the maximum completion time (Makespan). First, a mathematical model is developed for the concerned DHFSP. Second, four Q-learning-assisted meta-heuristics, e.g., genetic algorithm (GA), artificial bee colony algorithm (ABC), particle swarm optimization (PSO), and differential evolution (DE), are proposed. According to the nature of DHFSP, six local search operations… More >

  • Open Access

    ARTICLE

    Enhanced Mechanism for Link Failure Rerouting in Software-Defined Exchange Point Networks

    Abdijalil Abdullahi1,2, Selvakumar Manickam2,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4361-4385, 2024, DOI:10.32604/cmc.2024.054215 - 12 September 2024

    Abstract Internet Exchange Point (IXP) is a system that increases network bandwidth performance. Internet exchange points facilitate interconnection among network providers, including Internet Service Providers (ISPs) and Content Delivery Providers (CDNs). To improve service management, Internet exchange point providers have adopted the Software Defined Network (SDN) paradigm. This implementation is known as a Software-Defined Exchange Point (SDX). It improves network providers’ operations and management. However, performance issues still exist, particularly with multi-hop topologies. These issues include switch memory costs, packet processing latency, and link failure recovery delays. The paper proposes Enhanced Link Failure Rerouting (ELFR), an… More >

  • Open Access

    ARTICLE

    Energy-Saving Distributed Flexible Job Shop Scheduling Optimization with Dual Resource Constraints Based on Integrated Q-Learning Multi-Objective Grey Wolf Optimizer

    Hongliang Zhang1,2, Yi Chen1, Yuteng Zhang1, Gongjie Xu3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1459-1483, 2024, DOI:10.32604/cmes.2024.049756 - 20 May 2024

    Abstract The distributed flexible job shop scheduling problem (DFJSP) has attracted great attention with the growth of the global manufacturing industry. General DFJSP research only considers machine constraints and ignores worker constraints. As one critical factor of production, effective utilization of worker resources can increase productivity. Meanwhile, energy consumption is a growing concern due to the increasingly serious environmental issues. Therefore, the distributed flexible job shop scheduling problem with dual resource constraints (DFJSP-DRC) for minimizing makespan and total energy consumption is studied in this paper. To solve the problem, we present a multi-objective mathematical model for… More >

  • Open Access

    ARTICLE

    An Elite-Class Teaching-Learning-Based Optimization for Reentrant Hybrid Flow Shop Scheduling with Bottleneck Stage

    Deming Lei, Surui Duan, Mingbo Li*, Jing Wang

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 47-63, 2024, DOI:10.32604/cmc.2024.049481 - 25 April 2024

    Abstract Bottleneck stage and reentrance often exist in real-life manufacturing processes; however, the previous research rarely addresses these two processing conditions in a scheduling problem. In this study, a reentrant hybrid flow shop scheduling problem (RHFSP) with a bottleneck stage is considered, and an elite-class teaching-learning-based optimization (ETLBO) algorithm is proposed to minimize maximum completion time. To produce high-quality solutions, teachers are divided into formal ones and substitute ones, and multiple classes are formed. The teacher phase is composed of teacher competition and teacher teaching. The learner phase is replaced with a reinforcement search of the More >

  • Open Access

    ARTICLE

    Securing Forwarding Layers from Eavesdropping Attacks Using Proactive Approaches

    Jiajun Yan, Ying Zhou*, Anchen Dai, Tao Wang

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 563-580, 2024, DOI:10.32604/cmc.2024.048922 - 25 April 2024

    Abstract As an emerging network paradigm, the software-defined network (SDN) finds extensive application in areas such as smart grids, the Internet of Things (IoT), and edge computing. The forwarding layer in software-defined networks is susceptible to eavesdropping attacks. Route hopping is a moving target defense (MTD) technology that is frequently employed to resist eavesdropping attacks. In the traditional route hopping technology, both request and reply packets use the same hopping path. If an eavesdropping attacker monitors the nodes along this path, the risk of 100% data leakage becomes substantial. In this paper, we present an effective… More >

  • Open Access

    REVIEW

    A Review of the Application of Artificial Intelligence in Orthopedic Diseases

    Xinlong Diao, Xiao Wang*, Junkang Qin, Qinmu Wu, Zhiqin He, Xinghong Fan

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2617-2665, 2024, DOI:10.32604/cmc.2024.047377 - 27 February 2024

    Abstract In recent years, Artificial Intelligence (AI) has revolutionized people’s lives. AI has long made breakthrough progress in the field of surgery. However, the research on the application of AI in orthopedics is still in the exploratory stage. The paper first introduces the background of AI and orthopedic diseases, addresses the shortcomings of traditional methods in the detection of fractures and orthopedic diseases, draws out the advantages of deep learning and machine learning in image detection, and reviews the latest results of deep learning and machine learning applied to orthopedic image detection in recent years, describing… More >

  • Open Access

    ARTICLE

    An Improved Harris Hawk Optimization Algorithm for Flexible Job Shop Scheduling Problem

    Zhaolin Lv1, Yuexia Zhao2, Hongyue Kang3,*, Zhenyu Gao3, Yuhang Qin4

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2337-2360, 2024, DOI:10.32604/cmc.2023.045826 - 27 February 2024

    Abstract Flexible job shop scheduling problem (FJSP) is the core decision-making problem of intelligent manufacturing production management. The Harris hawk optimization (HHO) algorithm, as a typical metaheuristic algorithm, has been widely employed to solve scheduling problems. However, HHO suffers from premature convergence when solving NP-hard problems. Therefore, this paper proposes an improved HHO algorithm (GNHHO) to solve the FJSP. GNHHO introduces an elitism strategy, a chaotic mechanism, a nonlinear escaping energy update strategy, and a Gaussian random walk strategy to prevent premature convergence. A flexible job shop scheduling model is constructed, and the static and dynamic… More >

  • Open Access

    ARTICLE

    Research on Flexible Job Shop Scheduling Based on Improved Two-Layer Optimization Algorithm

    Qinhui Liu, Laizheng Zhu, Zhijie Gao, Jilong Wang, Jiang Li*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 811-843, 2024, DOI:10.32604/cmc.2023.046040 - 30 January 2024

    Abstract To improve the productivity, the resource utilization and reduce the production cost of flexible job shops, this paper designs an improved two-layer optimization algorithm for the dual-resource scheduling optimization problem of flexible job shop considering workpiece batching. Firstly, a mathematical model is established to minimize the maximum completion time. Secondly, an improved two-layer optimization algorithm is designed: the outer layer algorithm uses an improved PSO (Particle Swarm Optimization) to solve the workpiece batching problem, and the inner layer algorithm uses an improved GA (Genetic Algorithm) to solve the dual-resource scheduling problem. Then, a rescheduling method… More >

  • Open Access

    ARTICLE

    A Strengthened Dominance Relation NSGA-III Algorithm Based on Differential Evolution to Solve Job Shop Scheduling Problem

    Liang Zeng1,2, Junyang Shi1, Yanyan Li1, Shanshan Wang1,2,*, Weigang Li3

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 375-392, 2024, DOI:10.32604/cmc.2023.045803 - 30 January 2024

    Abstract The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems. It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives. The Non-dominated Sorting Genetic Algorithm III (NSGA-III) is an effective approach for solving the multi-objective job shop scheduling problem. Nevertheless, it has some limitations in solving scheduling problems, including inadequate global search capability, susceptibility to premature convergence, and challenges in balancing convergence and diversity. To enhance its performance, this paper introduces a strengthened dominance relation NSGA-III… More >

Displaying 11-20 on page 2 of 152. Per Page