Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (739)
  • Open Access

    ABSTRACT

    Progresses of the hybrid quantum-classical simulation: development of O(N)-DFT method and application to Li-diffusion in graphite

    Nobuko Ohba, Shuji Ogata

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.3, pp. 77-78, 2011, DOI:10.3970/icces.2011.019.077

    Abstract We have been developing the concurrent-type, hybrid quantum-classical simulation scheme for various atomic processes at liquid-solid interfaces [1]. In this scheme, the density-functional theory (DFT) method is applied to the "quantum" region to calculate the electronic structure; while the semi-empirical inter-atomic potential, to the "classical" region. In this talk we review its recent developments both from methodology and application viewpoints.
    In the hybrid simulation, the DFT method that is applied at each time-step to a cluster of typically a hundred atoms (i.e., the QM region) consumes most of the computation power. It is highly desirable… More >

  • Open Access

    ABSTRACT

    Modeling of moisture diffusion in permeable fiber-reinforced polymer composites using heterogeneous hybrid moisture element method

    De-Shin Liu, Zhen-Wei Zhuang, Cho-Liang Chung

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.2, pp. 39-40, 2011, DOI:10.3970/icces.2011.019.039

    Abstract A two-dimensional heterogeneous hybrid moisture element method (HHMEM) for modeling transient moisture diffusion in permeable fiber-reinforced polymer composites is proposed in this paper.
    The HHMEM scheme is based on a heterogeneous hybrid moisture element (HHME), whose properties are determined by equivalent moisture capacitance and conductance matrixes calculated using the conventional finite element formulation with the similarity mass/stiffness property and matrix condensing operations. A coupled HHME-FE scheme is developed and implemented in computer codes MATLAB to analyze the transient moisture diffusion characteristics of polymeric composite materials containing multiple permeable fibers. The analysis commences by comparing the… More >

  • Open Access

    ABSTRACT

    Performance-Based Damage Assessment of Steel/RC Hybrid Structure

    Wei Huang1,*, Zhi Zhou2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.4, pp. 68-68, 2019, DOI:10.32604/icces.2019.05066

    Abstract Structural members of different materials in hybrid structures have different damage performances. Based on the classical Park-Ang damage model, a consistent modification of that model is proposed for structural members of different materials in order to determine the behavior and the damage process from member-level to structure-level. Furthermore, the specific limit values of this damage model at various performance levels are calculated. Obvious differences have been found between the limit values of different types of members. In order to unify the damage limits that correspond to predefined performance levels such that a comparison between different More >

  • Open Access

    ABSTRACT

    Hybrid Quantum/Classical Approaches of Nano- and Meta-Materials

    Kenji Tsuruta1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.13, No.3, pp. 63-64, 2009, DOI:10.3970/icces.2009.013.063

    Abstract Unique properties in artificially designed new materials are demonstrated via multiple-scale computational techniques. A density-functional/classical molecular-dynamics method is employed to investigate segregation dynamics of dopants in nanostructured ceramics/semiconductors. We also develop a classical electromagnetic simulation algorithm combining with an electronic-structure calculation for analysis on optical properties of meta-materials. We demonstrate that these novel algorithms are highly optimized for ultra-scale parallel computers. More >

  • Open Access

    ABSTRACT

    Efficiency Test of Iterative-Multifrontal Hybrid Solver

    Min Ki Kim1, Seung Jo Kim2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.12, No.2, pp. 52-52, 2009, DOI:10.3970/icces.2009.012.052

    Abstract A new concept of hybrid iterative-multifrontal linear solution method is presented for large scale structural analysis problems. Multifrontal solution method is the best direct solution method ever known, so it is adequate for Domain decompostion types of iterative solvers. Multifrontal solver is served as an internal subdomain solver for domain decomposition iterative solver for achieving high performance of domain decomposition iterative solver. Lagrange multiplier is introduced to enforce the continuity of interface between subdomains. And corner DOF is introduced to avoid singularities of subdomains. Hybrid solution method is expected to show good parallel performance for More >

  • Open Access

    ABSTRACT

    The Tribological and Fatigue Properties of Steel modified by Hybrid Surface Modification combining Super Rapid Induction Heating & Quenching and DLC coating

    T. Aizawa1, H. Akebono2, H.Suzuki1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.5, No.4, pp. 193-198, 2008, DOI:10.3970/icces.2008.005.193

    Abstract In order to achieve power transmission parts like a compact gearwheel which indicates high performance properties, hybrid surface modification was performed by combining Super Rapid Induction Heating & Quenching(SRIQ) which creates high fatigue strength and Diamond Like Carbon (DLC) coating which are well known for their high hardness, low friction and excellent wear resistance. And, in order to prevent the base material from decreasing its fatigue strength, DLC was coated by using Unbalanced Magnetron Sputtering (UBMS) method which can coat at low temperature. Rotational bending fatigue tests and friction-wear tests were carried out. It was More >

  • Open Access

    ABSTRACT

    HYBRID a powerful Boundary Element-Finite Element Method(BEM/FEM) software for analysis of seismic response of multiphase porous media

    B. Gatmiri1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.4, No.3, pp. 159-166, 2007, DOI:10.3970/icces.2007.004.159

    Abstract This document summarizes the basic concepts and steps of establishment of the set of equations of wave propoagation in far field and of the dynamic behaviour of porous media in the near field. A breif description of HYBRID software as a powerful tool for evaluation of local seismic site effect is presented. The Combination of the FEM and BEM and improvement of numerical algorithm for the time truncation are described. More >

  • Open Access

    ABSTRACT

    A four-node hybrid assumed-strain finite element for laminated composite plates

    A. Cazzani1, E. Garusi2, A. Tralli3, S.N. Atluri4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.4, No.2, pp. 93-122, 2007, DOI:10.3970/icces.2007.004.093

    Abstract Fibre-reinforced plates and shells are finding an increasing interest in engineering applications. Consequently, efficient and robust computational tools are required for the analysis of such structural models. As a matter of fact, a large amount of laminate finite elements have been developed and incorporated in most commercial codes for structural analysis. In this paper a new laminate hybrid assumed-strain plate element is derived within the framework of the First-order Shear Deformation Theory (i.e. assuming that particles of the plate originally lying along a straight line which is normal to the undeformed middle surface remain aligned… More >

  • Open Access

    ABSTRACT

    II-VI Based Inorganic-Organic Hybrid Quantum Structures with High Degree of Structural Ordering, Long-Term Stability, and Novel Properties

    Yong Zhang

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.1, pp. 106-107, 2019, DOI:10.32604/icces.2019.05864

    Abstract Translational symmetry ensures phase coherency of a physical process among different units of a crystal, and thus produces collective quantum effects beyond the sum of the units. Any significant physical and/or chemical fluctuation, which typically exists in a semiconductor alloy or self-assembled or artificially grown nanostructure array, would hinder our ability to study and use the collective behavior relying on this coherency. Man-made structures remain as one of the central interests since semiconductor superlattices were proposed by Esaki and Tsu in 1970. Unfortunately, man-made structures with both genuine long- and short-range order are rare. Here… More >

  • Open Access

    ARTICLE

    Effect of Stacking Sequences on the Mechanical and Damping Properties of Flax Glass Fiber Hybrid

    Khouloud Cheour1,*, Mustapha Assarar1, Daniel Scida1, Rezak Ayad1, Xiaolu Gong2

    Journal of Renewable Materials, Vol.7, No.9, pp. 877-889, 2019, DOI:10.32604/jrm.2019.06826

    Abstract The aim of this study is to show the interest of the mechanical and dynamical properties of glass-flax hybrid composites. Therefore, various staking sequences of glass-flax hybrid composites were manufactured and tested in free vibrations. The damping coefficients were identified by fitting the experimental responses of free-free bending vibrations. The obtained results show that the staking sequences and the position of flax fiber layers in the hybrid composites changed the properties, so a classification of different stacking sequences was established. In fact, the hybrid laminate made of two glass external layers placed on both sides More >

Displaying 651-660 on page 66 of 739. Per Page