Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (832)
  • Open Access

    ARTICLE

    Darcy-Forchheimer Hybrid Nano Fluid Flow with Mixed Convection Past an Inclined Cylinder

    M. Bilal1, Imran Khan1, Taza Gul1,*, Asifa Tassaddiq2, Wajdi Alghamdi3, Safyan Mukhtar4, Poom Kumam5

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 2025-2039, 2021, DOI:10.32604/cmc.2020.012677 - 26 November 2020

    Abstract This article aims to investigate the Darcy Forchhemier mixed convection flow of the hybrid nanofluid through an inclined extending cylinder. Two different nanoparticles such as carbon nanotubes (CNTs) and iron oxide Fe3O4 have been added to the base fluid in order to prepare a hybrid nanofluid. Nonlinear partial differential equations for momentum, energy and convective diffusion have been changed into dimensionless ordinary differential equations after using Von Karman approach. Homotopy analysis method (HAM), a powerful analytical approach has been used to find the solution to the given problem. The effects of the physical constraints on velocity, More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Model for COVID-19 Prediction and Current Status of Clinical Trials Worldwide

    Shwet Ketu*, Pramod Kumar Mishra

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1896-1919, 2021, DOI:10.32604/cmc.2020.012423 - 26 November 2020

    Abstract Infections or virus-based diseases are a significant threat to human societies and could affect the whole world within a very short time-span. Corona Virus Disease-2019 (COVID-19), also known as novel coronavirus or SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus-2), is a respiratory based touch contiguous disease. The catastrophic situation resulting from the COVID-19 pandemic posed a serious threat to societies globally. The whole world is making tremendous efforts to combat this life-threatening disease. For taking remedial action and planning preventive measures on time, there is an urgent need for efficient prediction models to confront the COVID-19 outbreak.… More >

  • Open Access

    ARTICLE

    Temporal Stability Analysis of Magnetized Hybrid Nanofluid Propagating through an Unsteady Shrinking Sheet: Partial Slip Conditions

    Liaquat Ali Lund1,2, Zurni Omar1, Sumera Dero1,3, Yuming Chu4,5, Ilyas Khan6,*, Kottakkaran Sooppy Nisar7

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1963-1975, 2021, DOI:10.32604/cmc.2020.011976 - 26 November 2020

    Abstract The unsteady magnetohydrodynamic (MHD) flow on a horizontal preamble surface with hybrid nanoparticles in the presence of the first order velocity and thermal slip conditions are investigated. Alumina (Al2O3) and copper (Cu) are considered as hybrid nanoparticles that have been dispersed in water in order to make hybrid nanofluid (Cu − Al2O3/water). The system of similarity equations is derived from the system of partial differential equations (PDEs) by using variables of similarity, and their solutions are gotten with shooting method in the Maple software. In certain ranges of unsteadiness and magnetic parameters, the presence of dual solutions More >

  • Open Access

    ARTICLE

    Analysis of Solar Direct-Driven Organic Rankine Cycle Powered Vapor Compression Cooling System Combined with Electric Motor for Office Building Air-Conditioning

    Xiang Xiao1, Wei Zhao1, Wei Wang1, Wei Zhang1, Xianbiao Bu2, Lingbao Wang2,*, Huashan Li2

    Energy Engineering, Vol.118, No.1, pp. 89-101, 2021, DOI:10.32604/EE.2020.014016 - 17 November 2020

    Abstract Solar energy powered organic Rankine cycle vapor compression cycle (ORC-VCC) is a good alternative to convert solar heat into a cooling effect. In this study, an ORC-VCC system driven by solar energy combined with electric motor is proposed to ensure smooth operation under the conditions that solar radiation is unstable and discontinuous, and an office building located in Guangzhou, China is selected as a case study. The results show that beam solar radiation and generation temperature have considerable effects on the system performance. There is an optimal generation temperature at which the system achieves optimum More >

  • Open Access

    ARTICLE

    A Novel Hybrid Intelligent Prediction Model for Valley Deformation: A Case Study in Xiluodu Reservoir Region, China

    Mengcheng Sun1,2, Weiya Xu1,2,*, Huanling Wang1,3, Qingxiang Meng1,2, Long Yan1,2, Wei-Chau Xie4

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 1057-1074, 2021, DOI:10.32604/cmc.2020.012537 - 30 October 2020

    Abstract The narrowing deformation of reservoir valley during the initial operation period threatens the long-term safety of the dam, and an accurate prediction of valley deformation (VD) remains a challenging part of risk mitigation. In order to enhance the accuracy of VD prediction, a novel hybrid model combining Ensemble empirical mode decomposition based interval threshold denoising (EEMD-ITD), Differential evolutions—Shuffled frog leaping algorithm (DE-SFLA) and Least squares support vector machine (LSSVM) is proposed. The non-stationary VD series is firstly decomposed into several stationary subseries by EEMD; then, ITD is applied for redundant information denoising on special sub-series,… More >

  • Open Access

    ARTICLE

    Robust Hybrid Artificial Fish Swarm Simulated Annealing Optimization Algorithm for Secured Free Scale Networks against Malicious Attacks

    Ganeshan Keerthana1,*, Panneerselvam Anandan2, Nandhagopal Nachimuthu3

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 903-917, 2021, DOI:10.32604/cmc.2020.012255 - 30 October 2020

    Abstract Due to the recent proliferation of cyber-attacks, highly robust wireless sensor networks (WSN) become a critical issue as they survive node failures. Scale-free WSN is essential because they endure random attacks effectively. But they are susceptible to malicious attacks, which mainly targets particular significant nodes. Therefore, the robustness of the network becomes important for ensuring the network security. This paper presents a Robust Hybrid Artificial Fish Swarm Simulated Annealing Optimization (RHAFS-SA) Algorithm. It is introduced for improving the robust nature of free scale networks over malicious attacks (MA) with no change in degree distribution. The More >

  • Open Access

    ARTICLE

    A Hybrid Intelligent Approach for Content Authentication and Tampering Detection of Arabic Text Transmitted via Internet

    Fahd N. Al-Wesabi1,2,*

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 195-211, 2021, DOI:10.32604/cmc.2020.012088 - 30 October 2020

    Abstract In this paper, a hybrid intelligent text zero-watermarking approach has been proposed by integrating text zero-watermarking and hidden Markov model as natural language processing techniques for the content authentication and tampering detection of Arabic text contents. The proposed approach known as Second order of Alphanumeric Mechanism of Markov model and Zero-Watermarking Approach (SAMMZWA). Second level order of alphanumeric mechanism based on hidden Markov model is integrated with text zero-watermarking techniques to improve the overall performance and tampering detection accuracy of the proposed approach. The SAMMZWA approach embeds and detects the watermark logically without altering the More >

  • Open Access

    ARTICLE

    Dual Branches of MHD Three-Dimensional Rotating Flow of Hybrid Nanofluid on Nonlinear Shrinking Sheet

    Liaquat Ali Lund1,2,*, Zurni Omar1, Ilyas Khan3, El-Sayed M. Sherif4,5

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 127-139, 2021, DOI:10.32604/cmc.2020.013120 - 30 October 2020

    Abstract In this study, magnetohydrodynamic (MHD) three-dimensional (3D) flow of alumina (Al2O3) and copper (Cu) nanoparticles of an electrically conducting incompressible fluid in a rotating frame has been investigated. The shrinking surface generates the flow that also has been examined. The single-phase (i.e., Tiwari and Das) model is implemented for the hybrid nanofluid transport phenomena. Results for alumina and copper nanomaterials in the water base fluid are achieved. Boundary layer approximations are used to reduce governing partial differential (PDEs) system into the system of the ordinary differential equations (ODEs). The three-stage Lobatto IIIa method in bvp4c solver is More >

  • Open Access

    ARTICLE

    Synergistic Effect of Nano-α-Al2O3 Particles on Mechanical Properties of Glass-fibre reinforced Epoxy Hybrid Composites

    ANIL KUMAR VEERAPANENI1, CHANDRASEKAR KUPPAN2,*, MURTHY CHAVALI3,*

    Journal of Polymer Materials, Vol.37, No.3-4, pp. 121-130, 2020, DOI:10.32381/JPM.2020.37.3-4.1

    Abstract The mechanical properties of hybrid nanocomposites made of epoxy/glass fibre dispersed with nano-α-Al2 O3 powder at different weight percentages were studied.The effect of nano-α- Al2O3 size and wt% on mechanical properties like tensile, flexural, interlaminar shear stress and hardness enhanced because of their higher surface area and interfacial polymer-metal interaction. The nanoparticle embedded laminates have shown improvement in flexural strength,and hardness when compared to laminate without nano-α-Al2 O3. The properties varied with the loading and size of the nanoparticles. The tensile strength was highest for 0.5 wt% of 200nm nano-α-Al2O3, which is 167.80 N/m2.The highest flexural strength was observed More >

  • Open Access

    ARTICLE

    Quantum Computational Techniques for Prediction of Cognitive State of Human Mind from EEG Signals

    Seth Aishwarya1, Vaishnav Abeer1,*, Babu B. Sathish1, K. N. Subramanya2

    Journal of Quantum Computing, Vol.2, No.4, pp. 157-170, 2020, DOI:10.32604/jqc.2020.015018 - 07 January 2021

    Abstract The utilization of quantum states for the representation of information and the advances in machine learning is considered as an efficient way of modeling the working of complex systems. The states of mind or judgment outcomes are highly complex phenomena that happen inside the human body. Decoding these states is significant for improving the quality of technology and providing an impetus to scientific research aimed at understanding the functioning of the human mind. One of the key advantages of quantum wave-functions over conventional classical models is the existence of configurable hidden variables, which provide… More >

Displaying 641-650 on page 65 of 832. Per Page