Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (77)
  • Open Access

    ARTICLE

    Artificial Intelligence-Driven FVM-ANN Model for Entropy Analysis of MHD Natural Bioconvection in Nanofluid-Filled Porous Cavities

    Noura Alsedais1, Mohamed Ahmed Mansour2, Abdelraheem M. Aly3, Sara I. Abdelsalam4,5,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1277-1307, 2024, DOI:10.32604/fhmt.2024.056087 - 30 October 2024

    Abstract The research examines fluid behavior in a porous box-shaped enclosure. The fluid contains nanoscale particles and swimming microbes and is subject to magnetic forces at an angle. Natural circulation driven by biological factors is investigated. The analysis combines a traditional numerical approach with machine learning techniques. Mathematical equations describing the system are transformed into a dimensionless form and then solved using computational methods. The artificial neural network (ANN) model, trained with the Levenberg-Marquardt method, accurately predicts values, showing high correlation (R = 1), low mean squared error (MSE), and minimal error clustering. Parametric analysis reveals significant… More >

  • Open Access

    ARTICLE

    Updated Lagrangian Particle Hydrodynamics (ULPH) Modeling of Natural Convection Problems

    Junsong Xiong1, Zhen Wang2, Shaofan Li3, Xin Lai1,*, Lisheng Liu2,*, Xiang Liu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 151-169, 2024, DOI:10.32604/cmes.2024.053078 - 20 August 2024

    Abstract Natural convection is a heat transfer mechanism driven by temperature or density differences, leading to fluid motion without external influence. It occurs in various natural and engineering phenomena, influencing heat transfer, climate, and fluid mixing in industrial processes. This work aims to use the Updated Lagrangian Particle Hydrodynamics (ULPH) theory to address natural convection problems. The Navier-Stokes equation is discretized using second-order nonlocal differential operators, allowing a direct solution of the Laplace operator for temperature in the energy equation. Various numerical simulations, including cases such as natural convection in square cavities and two concentric cylinders, More >

  • Open Access

    ARTICLE

    An Updated Lagrangian Particle Hydrodynamics (ULPH)-NOSBPD Coupling Approach for Modeling Fluid-Structure Interaction Problem

    Zhen Wang1, Junsong Xiong1, Shaofan Li2, Xin Lai1,3,*, Xiang Liu3, Lisheng Liu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 491-523, 2024, DOI:10.32604/cmes.2024.052923 - 20 August 2024

    Abstract A fluid-structure interaction approach is proposed in this paper based on Non-Ordinary State-Based Peridynamics (NOSB-PD) and Updated Lagrangian Particle Hydrodynamics (ULPH) to simulate the fluid-structure interaction problem with large geometric deformation and material failure and solve the fluid-structure interaction problem of Newtonian fluid. In the coupled framework, the NOSB-PD theory describes the deformation and fracture of the solid material structure. ULPH is applied to describe the flow of Newtonian fluids due to its advantages in computational accuracy. The framework utilizes the advantages of NOSB-PD theory for solving discontinuous problems and ULPH theory for solving fluid… More >

  • Open Access

    ARTICLE

    Experimental Study of Liquid Metal Flow for the Development of a Contact-Less Control Technique

    Aleksandr Poluyanov*, Ilya Kolesnichenko

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1553-1563, 2024, DOI:10.32604/fdmp.2024.050165 - 23 July 2024

    Abstract The article presents an experimental study on the flow of an eutectic gallium alloy in a cylindrical cell, which is placed in an alternating magnetic field. The magnetic field is generated by a coil connected to an alternating current source. The coil is located at a fixed height in such a way that its plane is perpendicular to the gravity vector, which in turn is parallel to the axis of the cylinder. The position of the cylinder can vary in height with respect to the coil. The forced flow of the considered electrically conductive liquid… More > Graphic Abstract

    Experimental Study of Liquid Metal Flow for the Development of a Contact-Less Control Technique

  • Open Access

    ARTICLE

    Smoothed-Particle Hydrodynamics Simulation of Ship Motion and Tank Sloshing under the Effect of Regular Waves

    Mingming Zhao, Jialong Jiao*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1045-1061, 2024, DOI:10.32604/fdmp.2023.043744 - 07 June 2024

    Abstract Predicting the response of liquefied natural gas (LNG) contained in vessels subjected to external waves is extremely important to ensure the safety of the transportation process. In this study, the coupled behavior due to ship motion and liquid tank sloshing has been simulated by the Smoothed-Particle Hydrodynamics (SPH) method. Firstly, the sloshing flow in a rectangular tank was simulated and the related loads were analyzed to verify and validate the accuracy of the present SPH solver. Then, a three-dimensional simplified LNG carrier model, including two prismatic liquid tanks and a wave tank, was introduced. Different More >

  • Open Access

    ARTICLE

    Cross-Diffusion Effects on an MHD Williamson Nanofluid Flow Past a Nonlinear Stretching Sheet Immersed in a Permeable Medium

    R. Madan Kumar1, R. Srinivasa Raju2, F. Mebarek-Oudina3,*, M. Anil Kumar4, V. K. Narla2

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 15-34, 2024, DOI:10.32604/fhmt.2024.048045 - 21 March 2024

    Abstract The primary aim of this research endeavor is to examine the characteristics of magnetohydrodynamic Williamson nanofluid flow past a nonlinear stretching surface that is immersed in a permeable medium. In the current analysis, the impacts of Soret and Dufour (cross-diffusion effects) have been attentively taken into consideration. Using appropriate similarity variable transformations, the governing nonlinear partial differential equations were altered into nonlinear ordinary differential equations and then solved numerically using the Runge Kutta Fehlberg-45 method along with the shooting technique. Numerical simulations were then perceived to show the consequence of various physical parameters on the… More > Graphic Abstract

    Cross-Diffusion Effects on an MHD Williamson Nanofluid Flow Past a Nonlinear Stretching Sheet Immersed in a Permeable Medium

  • Open Access

    ARTICLE

    Effects of Viscous Dissipation and Periodic Heat Flux on MHD Free Convection Channel Flow with Heat Generation

    Mustafa Abdullah*

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 141-156, 2024, DOI:10.32604/fhmt.2024.046788 - 21 March 2024

    Abstract This study investigates the influence of periodic heat flux and viscous dissipation on magnetohydrodynamic (MHD) flow through a vertical channel with heat generation. A theoretical approach is employed. The channel is exposed to a perpendicular magnetic field, while one side experiences a periodic heat flow, and the other side undergoes a periodic temperature variation. Numerical solutions for the governing partial differential equations are obtained using a finite difference approach, complemented by an eigenfunction expansion method for analytical solutions. Visualizations and discussions illustrate how different variables affect the flow velocity and temperature fields. This offers comprehensive More >

  • Open Access

    ARTICLE

    Natural Convection and Irreversibility of Nanofluid Due to Inclined Magnetohydrodynamics (MHD) Filled in a Cavity with Y-Shape Heated Fin: FEM Computational Configuration

    Afraz Hussain Majeed1, Rashid Mahmood2, Sayed M. Eldin3, Imran Saddique4,5,*, S. Saleem6, Muhammad Jawad7

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1505-1519, 2024, DOI:10.32604/cmes.2023.030255 - 29 January 2024

    Abstract This study explains the entropy process of natural convective heating in the nanofluid-saturated cavity in a heated fin and magnetic field. The temperature is constant on the Y-shaped fin, insulating the top wall while the remaining walls remain cold. All walls are subject to impermeability and non-slip conditions. The mathematical modeling of the problem is demonstrated by the continuity, momentum, and energy equations incorporating the inclined magnetic field. For elucidating the flow characteristics Finite Element Method (FEM) is implemented using stable FE pair. A hybrid fine mesh is used for discretizing the domain. Velocity and More >

  • Open Access

    ARTICLE

    Chemically Radiative MHD Flow of a Micropolar Nanofluid over a Stretching/Shrinking Sheet with a Heat Source or Sink

    Parakapali Roja1, Shaik Mohammed Ibrahim2, Thummala Sankar Reddy3, Giulio Lorenzini4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 257-274, 2024, DOI:10.32604/fdmp.2023.042283 - 14 December 2023

    Abstract This study examines the behavior of a micropolar nanofluid flowing over a sheet in the presence of a transverse magnetic field and thermal effects. In addition, chemical (first-order homogeneous) reactions are taken into account. A similarity transformation is used to reduce the system of governing coupled non-linear partial differential equations (PDEs), which account for the transport of mass, momentum, angular momentum, energy and species, to a set of non-linear ordinary differential equations (ODEs). The Runge-Kutta method along with shooting method is used to solve them. The impact of several parameters is evaluated. It is shown More >

  • Open Access

    REVIEW

    Flow Regimes in Bubble Columns with and without Internals: A Review

    Ayat N. Mahmood1, Amer A. Abdulrahman1, Laith S. Sabri1,*, Abbas J. Sultan1, Hasan Shakir Majdi2, Muthanna H. Al-Dahhan3

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 239-256, 2024, DOI:10.32604/fdmp.2023.028015 - 14 December 2023

    Abstract Hydrodynamics characterization in terms of flow regime behavior is a crucial task to enhance the design of bubble column reactors and scaling up related methodologies. This review presents recent studies on the typical flow regimes established in bubble columns. Some effort is also provided to introduce relevant definitions pertaining to this field, namely, that of “void fraction” and related (local, chordal, cross-sectional and volumetric) variants. Experimental studies involving different parameters that affect design and operating conditions are also discussed in detail. In the second part of the review, the attention is shifted to cases with More >

Displaying 11-20 on page 2 of 77. Per Page